Chenyang Cai, Yi Chen, Fulin Cheng, Zechang Wei, Wenbin Zhou and Yu Fu*,
{"title":"用于集成水收集和发电系统的仿生双吸附网络化 MXene 气凝胶泵。","authors":"Chenyang Cai, Yi Chen, Fulin Cheng, Zechang Wei, Wenbin Zhou and Yu Fu*, ","doi":"10.1021/acsnano.3c10313","DOIUrl":null,"url":null,"abstract":"<p >Harvesting atmospheric water and converting it into electricity play vital roles in advancing next-generation energy conversion systems. However, the current water harvester systems suffer from a weak water capture ability and poor recyclability due to high diffusion barriers and low sorption kinetics, which significantly limit their practical application. Herein, we drew inspiration from the natural “Pump effect” observed in wood and successfully developed a dual “absorption–adsorption” networked MXene aerogel atmospheric water harvester (MAWH) through ice templating and confining LiCl processes, thereby serving multiple purposes of clean water production, passive dehumidification, and power generation. The MAWH benefits from the dual H-bond network of MXene and cellulose nanocrystals (absorption network) and the hygroscopic properties of lithium chloride (adsorption network). Furthermore, its aligned wood-like channel structure efficiently eliminates water nucleation near the 3D network, resulting in fast moisture absorption. The developed MAWH demonstrates a high moisture absorption ability of 3.12 g g<sup>–1</sup> at 90% relative humidity (RH), featuring rapid vapor transport rates and durable cyclic performance. When compared with commercial desiccants such as the 4A molecular sieve and silica gel, the MAWH can reduce the RH from 80% to 20% within just 6 h. Most notably, our integrated MAWH-based water harvesting–power generation system achieves a high voltage of ∼0.12 V at 77% RH, showcasing its potential for practical application. These developed MAWHs are considered as high-performance atmospheric water harvesters in the water collection and power generation field.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 5","pages":"4376–4387"},"PeriodicalIF":16.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Dual Absorption–Adsorption Networked MXene Aerogel-Pump for Integrated Water Harvesting and Power Generation System\",\"authors\":\"Chenyang Cai, Yi Chen, Fulin Cheng, Zechang Wei, Wenbin Zhou and Yu Fu*, \",\"doi\":\"10.1021/acsnano.3c10313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Harvesting atmospheric water and converting it into electricity play vital roles in advancing next-generation energy conversion systems. However, the current water harvester systems suffer from a weak water capture ability and poor recyclability due to high diffusion barriers and low sorption kinetics, which significantly limit their practical application. Herein, we drew inspiration from the natural “Pump effect” observed in wood and successfully developed a dual “absorption–adsorption” networked MXene aerogel atmospheric water harvester (MAWH) through ice templating and confining LiCl processes, thereby serving multiple purposes of clean water production, passive dehumidification, and power generation. The MAWH benefits from the dual H-bond network of MXene and cellulose nanocrystals (absorption network) and the hygroscopic properties of lithium chloride (adsorption network). Furthermore, its aligned wood-like channel structure efficiently eliminates water nucleation near the 3D network, resulting in fast moisture absorption. The developed MAWH demonstrates a high moisture absorption ability of 3.12 g g<sup>–1</sup> at 90% relative humidity (RH), featuring rapid vapor transport rates and durable cyclic performance. When compared with commercial desiccants such as the 4A molecular sieve and silica gel, the MAWH can reduce the RH from 80% to 20% within just 6 h. Most notably, our integrated MAWH-based water harvesting–power generation system achieves a high voltage of ∼0.12 V at 77% RH, showcasing its potential for practical application. These developed MAWHs are considered as high-performance atmospheric water harvesters in the water collection and power generation field.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 5\",\"pages\":\"4376–4387\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.3c10313\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.3c10313","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomimetic Dual Absorption–Adsorption Networked MXene Aerogel-Pump for Integrated Water Harvesting and Power Generation System
Harvesting atmospheric water and converting it into electricity play vital roles in advancing next-generation energy conversion systems. However, the current water harvester systems suffer from a weak water capture ability and poor recyclability due to high diffusion barriers and low sorption kinetics, which significantly limit their practical application. Herein, we drew inspiration from the natural “Pump effect” observed in wood and successfully developed a dual “absorption–adsorption” networked MXene aerogel atmospheric water harvester (MAWH) through ice templating and confining LiCl processes, thereby serving multiple purposes of clean water production, passive dehumidification, and power generation. The MAWH benefits from the dual H-bond network of MXene and cellulose nanocrystals (absorption network) and the hygroscopic properties of lithium chloride (adsorption network). Furthermore, its aligned wood-like channel structure efficiently eliminates water nucleation near the 3D network, resulting in fast moisture absorption. The developed MAWH demonstrates a high moisture absorption ability of 3.12 g g–1 at 90% relative humidity (RH), featuring rapid vapor transport rates and durable cyclic performance. When compared with commercial desiccants such as the 4A molecular sieve and silica gel, the MAWH can reduce the RH from 80% to 20% within just 6 h. Most notably, our integrated MAWH-based water harvesting–power generation system achieves a high voltage of ∼0.12 V at 77% RH, showcasing its potential for practical application. These developed MAWHs are considered as high-performance atmospheric water harvesters in the water collection and power generation field.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.