用于自动超声心动图应变测量的深度学习算法的外部验证。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2023-11-20 eCollection Date: 2024-01-01 DOI:10.1093/ehjdh/ztad072
Peder L Myhre, Chung-Lieh Hung, Matthew J Frost, Zhubo Jiang, Wouter Ouwerkerk, Kanako Teramoto, Sara Svedlund, Antti Saraste, Camilla Hage, Ru-San Tan, Lauren Beussink-Nelson, Maria L Fermer, Li-Ming Gan, Yoran M Hummel, Lars H Lund, Sanjiv J Shah, Carolyn S P Lam, Jasper Tromp
{"title":"用于自动超声心动图应变测量的深度学习算法的外部验证。","authors":"Peder L Myhre, Chung-Lieh Hung, Matthew J Frost, Zhubo Jiang, Wouter Ouwerkerk, Kanako Teramoto, Sara Svedlund, Antti Saraste, Camilla Hage, Ru-San Tan, Lauren Beussink-Nelson, Maria L Fermer, Li-Ming Gan, Yoran M Hummel, Lars H Lund, Sanjiv J Shah, Carolyn S P Lam, Jasper Tromp","doi":"10.1093/ehjdh/ztad072","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Echocardiographic strain imaging reflects myocardial deformation and is a sensitive measure of cardiac function and wall-motion abnormalities. Deep learning (DL) algorithms could automate the interpretation of echocardiographic strain imaging.</p><p><strong>Methods and results: </strong>We developed and trained an automated DL-based algorithm for left ventricular (LV) strain measurements in an internal dataset. Global longitudinal strain (GLS) was validated externally in (i) a <i>real-world</i> Taiwanese cohort of participants with and without heart failure (HF), (ii) a core-lab measured dataset from the multinational prevalence of microvascular dysfunction-HF and preserved ejection fraction (PROMIS-HFpEF) study, and regional strain in (iii) the HMC-QU-MI study of patients with suspected myocardial infarction. Outcomes included measures of agreement [bias, mean absolute difference (MAD), root-mean-squared-error (RMSE), and Pearson's correlation (R)] and area under the curve (AUC) to identify HF and regional wall-motion abnormalities. The DL workflow successfully analysed 3741 (89%) studies in the Taiwanese cohort, 176 (96%) in PROMIS-HFpEF, and 158 (98%) in HMC-QU-MI. Automated GLS showed good agreement with manual measurements (mean ± SD): -18.9 ± 4.5% vs. -18.2 ± 4.4%, respectively, bias 0.68 ± 2.52%, MAD 2.0 ± 1.67, RMSE = 2.61, R = 0.84 in the Taiwanese cohort; and -15.4 ± 4.1% vs. -15.9 ± 3.6%, respectively, bias -0.65 ± 2.71%, MAD 2.19 ± 1.71, RMSE = 2.78, R = 0.76 in PROMIS-HFpEF. In the Taiwanese cohort, automated GLS accurately identified patients with HF (AUC = 0.89 for total HF and AUC = 0.98 for HF with reduced ejection fraction). In HMC-QU-MI, automated regional strain identified regional wall-motion abnormalities with an average AUC = 0.80.</p><p><strong>Conclusion: </strong>DL algorithms can interpret echocardiographic strain images with similar accuracy as conventional measurements. These results highlight the potential of DL algorithms to democratize the use of cardiac strain measurements and reduce time-spent and costs for echo labs globally.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802824/pdf/","citationCount":"0","resultStr":"{\"title\":\"External validation of a deep learning algorithm for automated echocardiographic strain measurements.\",\"authors\":\"Peder L Myhre, Chung-Lieh Hung, Matthew J Frost, Zhubo Jiang, Wouter Ouwerkerk, Kanako Teramoto, Sara Svedlund, Antti Saraste, Camilla Hage, Ru-San Tan, Lauren Beussink-Nelson, Maria L Fermer, Li-Ming Gan, Yoran M Hummel, Lars H Lund, Sanjiv J Shah, Carolyn S P Lam, Jasper Tromp\",\"doi\":\"10.1093/ehjdh/ztad072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Echocardiographic strain imaging reflects myocardial deformation and is a sensitive measure of cardiac function and wall-motion abnormalities. Deep learning (DL) algorithms could automate the interpretation of echocardiographic strain imaging.</p><p><strong>Methods and results: </strong>We developed and trained an automated DL-based algorithm for left ventricular (LV) strain measurements in an internal dataset. Global longitudinal strain (GLS) was validated externally in (i) a <i>real-world</i> Taiwanese cohort of participants with and without heart failure (HF), (ii) a core-lab measured dataset from the multinational prevalence of microvascular dysfunction-HF and preserved ejection fraction (PROMIS-HFpEF) study, and regional strain in (iii) the HMC-QU-MI study of patients with suspected myocardial infarction. Outcomes included measures of agreement [bias, mean absolute difference (MAD), root-mean-squared-error (RMSE), and Pearson's correlation (R)] and area under the curve (AUC) to identify HF and regional wall-motion abnormalities. The DL workflow successfully analysed 3741 (89%) studies in the Taiwanese cohort, 176 (96%) in PROMIS-HFpEF, and 158 (98%) in HMC-QU-MI. Automated GLS showed good agreement with manual measurements (mean ± SD): -18.9 ± 4.5% vs. -18.2 ± 4.4%, respectively, bias 0.68 ± 2.52%, MAD 2.0 ± 1.67, RMSE = 2.61, R = 0.84 in the Taiwanese cohort; and -15.4 ± 4.1% vs. -15.9 ± 3.6%, respectively, bias -0.65 ± 2.71%, MAD 2.19 ± 1.71, RMSE = 2.78, R = 0.76 in PROMIS-HFpEF. In the Taiwanese cohort, automated GLS accurately identified patients with HF (AUC = 0.89 for total HF and AUC = 0.98 for HF with reduced ejection fraction). In HMC-QU-MI, automated regional strain identified regional wall-motion abnormalities with an average AUC = 0.80.</p><p><strong>Conclusion: </strong>DL algorithms can interpret echocardiographic strain images with similar accuracy as conventional measurements. These results highlight the potential of DL algorithms to democratize the use of cardiac strain measurements and reduce time-spent and costs for echo labs globally.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802824/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztad072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:超声心动图应变成像反映心肌变形,是衡量心脏功能和室壁运动异常的敏感指标。深度学习(DL)算法可以自动解读超声心动图应变成像:我们开发并训练了一种基于深度学习的自动算法,用于在内部数据集中测量左心室(LV)应变。全球纵向应变(GLS)在以下方面进行了外部验证:(i) 由患有和未患有心力衰竭(HF)的台湾参与者组成的真实世界队列;(ii) 来自微血管功能障碍-HF 和射血分数保留(PROMIS-HFpEF)多国患病率研究的核心实验室测量数据集;(iii) 由疑似心肌梗死患者组成的 HMC-QU-MI 研究中的区域应变。结果包括识别高频和区域室壁运动异常的一致性测量(偏差、平均绝对差值 (MAD)、均方根误差 (RMSE) 和皮尔逊相关性 (R))和曲线下面积 (AUC)。DL 工作流程成功分析了台湾队列中的 3741 项研究(89%)、PROMIS-HFpEF 中的 176 项研究(96%)和 HMC-QU-MI 中的 158 项研究(98%)。自动 GLS 与人工测量结果显示出良好的一致性(平均值 ± SD):分别为 -18.9 ± 4.5% vs. -18.2 ± 4.4%,偏差 0.68 ± 2.52%,MAD 2.0 ± 1.67,RMSE = 2.61,R = 0.84;PROMIS-HFpEF 分别为 -15.4 ± 4.1% vs. -15.9 ± 3.6%,偏差为 -0.65 ± 2.71%,MAD 为 2.19 ± 1.71,RMSE = 2.78,R = 0.76。在台湾队列中,自动 GLS 能准确识别心房颤动患者(总心房颤动的 AUC = 0.89,射血分数降低的心房颤动的 AUC = 0.98)。在 HMC-QU-MI 中,自动区域应变能识别区域室壁运动异常,平均 AUC = 0.80:DL算法可以解释超声心动图应变图像,其准确性与传统测量相似。这些结果凸显了 DL 算法的潜力,它能使心脏应变测量的使用平民化,并减少全球回声实验室的时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
External validation of a deep learning algorithm for automated echocardiographic strain measurements.

Aims: Echocardiographic strain imaging reflects myocardial deformation and is a sensitive measure of cardiac function and wall-motion abnormalities. Deep learning (DL) algorithms could automate the interpretation of echocardiographic strain imaging.

Methods and results: We developed and trained an automated DL-based algorithm for left ventricular (LV) strain measurements in an internal dataset. Global longitudinal strain (GLS) was validated externally in (i) a real-world Taiwanese cohort of participants with and without heart failure (HF), (ii) a core-lab measured dataset from the multinational prevalence of microvascular dysfunction-HF and preserved ejection fraction (PROMIS-HFpEF) study, and regional strain in (iii) the HMC-QU-MI study of patients with suspected myocardial infarction. Outcomes included measures of agreement [bias, mean absolute difference (MAD), root-mean-squared-error (RMSE), and Pearson's correlation (R)] and area under the curve (AUC) to identify HF and regional wall-motion abnormalities. The DL workflow successfully analysed 3741 (89%) studies in the Taiwanese cohort, 176 (96%) in PROMIS-HFpEF, and 158 (98%) in HMC-QU-MI. Automated GLS showed good agreement with manual measurements (mean ± SD): -18.9 ± 4.5% vs. -18.2 ± 4.4%, respectively, bias 0.68 ± 2.52%, MAD 2.0 ± 1.67, RMSE = 2.61, R = 0.84 in the Taiwanese cohort; and -15.4 ± 4.1% vs. -15.9 ± 3.6%, respectively, bias -0.65 ± 2.71%, MAD 2.19 ± 1.71, RMSE = 2.78, R = 0.76 in PROMIS-HFpEF. In the Taiwanese cohort, automated GLS accurately identified patients with HF (AUC = 0.89 for total HF and AUC = 0.98 for HF with reduced ejection fraction). In HMC-QU-MI, automated regional strain identified regional wall-motion abnormalities with an average AUC = 0.80.

Conclusion: DL algorithms can interpret echocardiographic strain images with similar accuracy as conventional measurements. These results highlight the potential of DL algorithms to democratize the use of cardiac strain measurements and reduce time-spent and costs for echo labs globally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信