{"title":"利用微组织工程和 3D 打印技术制作人工气管,用于气管个性化修复。","authors":"Chao Qi, Lu Cheng, Chuanqi Huang","doi":"10.1089/ten.TEA.2023.0171","DOIUrl":null,"url":null,"abstract":"<p><p>Millions of people suffer from tracheal defect worldwide each year, while autograft and allograft cannot meet existing treatment needs. Tissue-engineered trachea substitutes represent a promising treatment for tracheal defect, while lack of precisely personalized treatment abilities. Therefore, development of an artificial trachea that can be used for personalized transplantation is highly desired. In this study, we report the design and fabrication of an artificial trachea based on sericin microsphere (SM) by microtissue engineering technology and three-dimensional (3D) printing for personalized repair of tracheal defect. The SM possessed natural cell adhesion and promoting cell proliferation ability. Then, the microtissue was fabricated by coincubation of SM with chondrocytes and tracheal epithelial cells. This microtissue displayed good cytocompatibility and could support seed cell adhesion and proliferation. After that, this microtissue was individually assembled to form an artificial trachea by 3D printing. Notably, artificial trachea had an encouraging complete cartilaginous and epithelial structure after transplantation. Furthermore, the artificial trachea molecularly resembled native trachea as evidenced by similar expression of trachea-critical genes. Altogether, the work demonstrates the effectiveness of microtissue engineering and 3D printing for individual construction of artificial trachea, providing a promising approach for personalized treatment of tracheal defect.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Trachea from Microtissue Engineering and Three-Dimensional Printing for Tracheal Personalized Repair.\",\"authors\":\"Chao Qi, Lu Cheng, Chuanqi Huang\",\"doi\":\"10.1089/ten.TEA.2023.0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Millions of people suffer from tracheal defect worldwide each year, while autograft and allograft cannot meet existing treatment needs. Tissue-engineered trachea substitutes represent a promising treatment for tracheal defect, while lack of precisely personalized treatment abilities. Therefore, development of an artificial trachea that can be used for personalized transplantation is highly desired. In this study, we report the design and fabrication of an artificial trachea based on sericin microsphere (SM) by microtissue engineering technology and three-dimensional (3D) printing for personalized repair of tracheal defect. The SM possessed natural cell adhesion and promoting cell proliferation ability. Then, the microtissue was fabricated by coincubation of SM with chondrocytes and tracheal epithelial cells. This microtissue displayed good cytocompatibility and could support seed cell adhesion and proliferation. After that, this microtissue was individually assembled to form an artificial trachea by 3D printing. Notably, artificial trachea had an encouraging complete cartilaginous and epithelial structure after transplantation. Furthermore, the artificial trachea molecularly resembled native trachea as evidenced by similar expression of trachea-critical genes. Altogether, the work demonstrates the effectiveness of microtissue engineering and 3D printing for individual construction of artificial trachea, providing a promising approach for personalized treatment of tracheal defect.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0171\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0171","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Artificial Trachea from Microtissue Engineering and Three-Dimensional Printing for Tracheal Personalized Repair.
Millions of people suffer from tracheal defect worldwide each year, while autograft and allograft cannot meet existing treatment needs. Tissue-engineered trachea substitutes represent a promising treatment for tracheal defect, while lack of precisely personalized treatment abilities. Therefore, development of an artificial trachea that can be used for personalized transplantation is highly desired. In this study, we report the design and fabrication of an artificial trachea based on sericin microsphere (SM) by microtissue engineering technology and three-dimensional (3D) printing for personalized repair of tracheal defect. The SM possessed natural cell adhesion and promoting cell proliferation ability. Then, the microtissue was fabricated by coincubation of SM with chondrocytes and tracheal epithelial cells. This microtissue displayed good cytocompatibility and could support seed cell adhesion and proliferation. After that, this microtissue was individually assembled to form an artificial trachea by 3D printing. Notably, artificial trachea had an encouraging complete cartilaginous and epithelial structure after transplantation. Furthermore, the artificial trachea molecularly resembled native trachea as evidenced by similar expression of trachea-critical genes. Altogether, the work demonstrates the effectiveness of microtissue engineering and 3D printing for individual construction of artificial trachea, providing a promising approach for personalized treatment of tracheal defect.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.