利用微组织工程和 3D 打印技术制作人工气管,用于气管个性化修复。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue Engineering Part A Pub Date : 2024-05-01 Epub Date: 2024-02-26 DOI:10.1089/ten.TEA.2023.0171
Chao Qi, Lu Cheng, Chuanqi Huang
{"title":"利用微组织工程和 3D 打印技术制作人工气管,用于气管个性化修复。","authors":"Chao Qi, Lu Cheng, Chuanqi Huang","doi":"10.1089/ten.TEA.2023.0171","DOIUrl":null,"url":null,"abstract":"<p><p>Millions of people suffer from tracheal defect worldwide each year, while autograft and allograft cannot meet existing treatment needs. Tissue-engineered trachea substitutes represent a promising treatment for tracheal defect, while lack of precisely personalized treatment abilities. Therefore, development of an artificial trachea that can be used for personalized transplantation is highly desired. In this study, we report the design and fabrication of an artificial trachea based on sericin microsphere (SM) by microtissue engineering technology and three-dimensional (3D) printing for personalized repair of tracheal defect. The SM possessed natural cell adhesion and promoting cell proliferation ability. Then, the microtissue was fabricated by coincubation of SM with chondrocytes and tracheal epithelial cells. This microtissue displayed good cytocompatibility and could support seed cell adhesion and proliferation. After that, this microtissue was individually assembled to form an artificial trachea by 3D printing. Notably, artificial trachea had an encouraging complete cartilaginous and epithelial structure after transplantation. Furthermore, the artificial trachea molecularly resembled native trachea as evidenced by similar expression of trachea-critical genes. Altogether, the work demonstrates the effectiveness of microtissue engineering and 3D printing for individual construction of artificial trachea, providing a promising approach for personalized treatment of tracheal defect.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Trachea from Microtissue Engineering and Three-Dimensional Printing for Tracheal Personalized Repair.\",\"authors\":\"Chao Qi, Lu Cheng, Chuanqi Huang\",\"doi\":\"10.1089/ten.TEA.2023.0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Millions of people suffer from tracheal defect worldwide each year, while autograft and allograft cannot meet existing treatment needs. Tissue-engineered trachea substitutes represent a promising treatment for tracheal defect, while lack of precisely personalized treatment abilities. Therefore, development of an artificial trachea that can be used for personalized transplantation is highly desired. In this study, we report the design and fabrication of an artificial trachea based on sericin microsphere (SM) by microtissue engineering technology and three-dimensional (3D) printing for personalized repair of tracheal defect. The SM possessed natural cell adhesion and promoting cell proliferation ability. Then, the microtissue was fabricated by coincubation of SM with chondrocytes and tracheal epithelial cells. This microtissue displayed good cytocompatibility and could support seed cell adhesion and proliferation. After that, this microtissue was individually assembled to form an artificial trachea by 3D printing. Notably, artificial trachea had an encouraging complete cartilaginous and epithelial structure after transplantation. Furthermore, the artificial trachea molecularly resembled native trachea as evidenced by similar expression of trachea-critical genes. Altogether, the work demonstrates the effectiveness of microtissue engineering and 3D printing for individual construction of artificial trachea, providing a promising approach for personalized treatment of tracheal defect.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0171\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0171","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

全世界每年有数百万人患有气管缺损,而自体移植和异体移植无法满足现有的治疗需求。组织工程气管替代物是治疗气管缺损的一种有前途的方法,但缺乏精确的个性化治疗能力。因此,开发一种可用于个性化移植的人工气管是非常必要的。在此,我们报道了基于丝胶微球的人工气管的设计与制作,该人工气管基于微组织工程技术和三维打印技术,可用于气管缺损的个性化修复。丝胶微球具有天然的细胞粘附性和促进细胞增殖的能力。然后,通过丝胶微球与软骨细胞和气管上皮细胞共同培养,制造出了微组织。这种微组织具有良好的细胞相容性,能支持种子细胞的粘附和增殖。之后,通过三维打印技术将这种微组织单独组装成人工气管。值得注意的是,人工气管移植后具有令人鼓舞的完整软骨和上皮结构。此外,人工气管在分子上与原生气管相似,气管关键基因的相似表达也证明了这一点。总之,这项工作证明了微组织工程和三维打印技术在个体化构建人工气管方面的有效性,为气管缺损的个性化治疗提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Trachea from Microtissue Engineering and Three-Dimensional Printing for Tracheal Personalized Repair.

Millions of people suffer from tracheal defect worldwide each year, while autograft and allograft cannot meet existing treatment needs. Tissue-engineered trachea substitutes represent a promising treatment for tracheal defect, while lack of precisely personalized treatment abilities. Therefore, development of an artificial trachea that can be used for personalized transplantation is highly desired. In this study, we report the design and fabrication of an artificial trachea based on sericin microsphere (SM) by microtissue engineering technology and three-dimensional (3D) printing for personalized repair of tracheal defect. The SM possessed natural cell adhesion and promoting cell proliferation ability. Then, the microtissue was fabricated by coincubation of SM with chondrocytes and tracheal epithelial cells. This microtissue displayed good cytocompatibility and could support seed cell adhesion and proliferation. After that, this microtissue was individually assembled to form an artificial trachea by 3D printing. Notably, artificial trachea had an encouraging complete cartilaginous and epithelial structure after transplantation. Furthermore, the artificial trachea molecularly resembled native trachea as evidenced by similar expression of trachea-critical genes. Altogether, the work demonstrates the effectiveness of microtissue engineering and 3D printing for individual construction of artificial trachea, providing a promising approach for personalized treatment of tracheal defect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信