Dina N Abd-Elshafy, Rola Nadeem, Mohamed H Nasraa, Mahmoud M Bahgat
{"title":"分析 SARS-CoV-2 nsp12 P323L/A529V 突变:埃及记录中的瞬时峰值血统 C.36.3 对蛋白质结构和治疗反应的共同影响。","authors":"Dina N Abd-Elshafy, Rola Nadeem, Mohamed H Nasraa, Mahmoud M Bahgat","doi":"10.1515/znc-2023-0132","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 nsp12, the RNA-dependent RNA-polymerase plays a crucial role in virus replication. Monitoring the effect of its emerging mutants on viral replication and response to antiviral drugs is important. Nsp12 of two Egyptian isolates circulating in 2020 and 2021 were sequenced. Both isolates included P323L, one included the A529V. Tracking A529V mutant frequency, it relates to the transience peaked C.36.3 variant and its parent C.36, both peaked worldwide on February-August 2021, enlisted as high transmissible variants under investigation (VUI) on May 2021. Both Mutants were reported to originate from Egypt and showed an abrupt low frequency upon screening, we analyzed all 1104 nsp12 Egyptian sequences. A529V mutation was in 36 records with an abrupt low frequency on June 2021. As its possible reappearance might obligate actions for a candidate VUI, we analyzed the predicted co-effect of P323L and A529V mutations on protein stability and dynamics through protein structure simulations. Three available structures for drug-nsp12 interaction were used representing remdesivir, suramin and favipiravir drugs. Remdesivir and suramin showed an increase in structure stability and considerable change in flexibility while favipiravir showed an extreme interaction. Results predict a favored efficiency of the drugs except for favipiravir in case of the reported mutations.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":"13-24"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the SARS-CoV-2 nsp12 P323L/A529V mutations: coeffect in the transiently peaking lineage C.36.3 on protein structure and response to treatment in Egyptian records.\",\"authors\":\"Dina N Abd-Elshafy, Rola Nadeem, Mohamed H Nasraa, Mahmoud M Bahgat\",\"doi\":\"10.1515/znc-2023-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SARS-CoV-2 nsp12, the RNA-dependent RNA-polymerase plays a crucial role in virus replication. Monitoring the effect of its emerging mutants on viral replication and response to antiviral drugs is important. Nsp12 of two Egyptian isolates circulating in 2020 and 2021 were sequenced. Both isolates included P323L, one included the A529V. Tracking A529V mutant frequency, it relates to the transience peaked C.36.3 variant and its parent C.36, both peaked worldwide on February-August 2021, enlisted as high transmissible variants under investigation (VUI) on May 2021. Both Mutants were reported to originate from Egypt and showed an abrupt low frequency upon screening, we analyzed all 1104 nsp12 Egyptian sequences. A529V mutation was in 36 records with an abrupt low frequency on June 2021. As its possible reappearance might obligate actions for a candidate VUI, we analyzed the predicted co-effect of P323L and A529V mutations on protein stability and dynamics through protein structure simulations. Three available structures for drug-nsp12 interaction were used representing remdesivir, suramin and favipiravir drugs. Remdesivir and suramin showed an increase in structure stability and considerable change in flexibility while favipiravir showed an extreme interaction. Results predict a favored efficiency of the drugs except for favipiravir in case of the reported mutations.</p>\",\"PeriodicalId\":49344,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"volume\":\" \",\"pages\":\"13-24\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2023-0132\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2023-0132","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Analysis of the SARS-CoV-2 nsp12 P323L/A529V mutations: coeffect in the transiently peaking lineage C.36.3 on protein structure and response to treatment in Egyptian records.
SARS-CoV-2 nsp12, the RNA-dependent RNA-polymerase plays a crucial role in virus replication. Monitoring the effect of its emerging mutants on viral replication and response to antiviral drugs is important. Nsp12 of two Egyptian isolates circulating in 2020 and 2021 were sequenced. Both isolates included P323L, one included the A529V. Tracking A529V mutant frequency, it relates to the transience peaked C.36.3 variant and its parent C.36, both peaked worldwide on February-August 2021, enlisted as high transmissible variants under investigation (VUI) on May 2021. Both Mutants were reported to originate from Egypt and showed an abrupt low frequency upon screening, we analyzed all 1104 nsp12 Egyptian sequences. A529V mutation was in 36 records with an abrupt low frequency on June 2021. As its possible reappearance might obligate actions for a candidate VUI, we analyzed the predicted co-effect of P323L and A529V mutations on protein stability and dynamics through protein structure simulations. Three available structures for drug-nsp12 interaction were used representing remdesivir, suramin and favipiravir drugs. Remdesivir and suramin showed an increase in structure stability and considerable change in flexibility while favipiravir showed an extreme interaction. Results predict a favored efficiency of the drugs except for favipiravir in case of the reported mutations.
期刊介绍:
A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.