用肿瘤细胞衍生的纳米粒子加热肿瘤,加强结直肠癌的化疗免疫疗法。

Nanomedicine (London, England) Pub Date : 2024-03-01 Epub Date: 2024-01-24 DOI:10.2217/nnm-2023-0332
Xin-Ying Li, Rong-Hui Li, Jun-Zi Cong, Wen-Shang Liu, Yang Zhang, Hui-Lin Guan, Ling-Ling Zhu, Kai Chen, Li-Ying Pang, Hong Jin
{"title":"用肿瘤细胞衍生的纳米粒子加热肿瘤,加强结直肠癌的化疗免疫疗法。","authors":"Xin-Ying Li, Rong-Hui Li, Jun-Zi Cong, Wen-Shang Liu, Yang Zhang, Hui-Lin Guan, Ling-Ling Zhu, Kai Chen, Li-Ying Pang, Hong Jin","doi":"10.2217/nnm-2023-0332","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To investigate the mechanism of doxorubicin (DOX)-induced immunogenic cell death (ICD) and to improve immunotherapy efficacy. <b>Materials & methods:</b> In this study, hybrid vesicles containing DOX (HV-DOX) were prepared by thin-film hydration with extrusion, and the formulated nanoparticles were characterized physically. Furthermore, <i>in vitro</i> experiments and animal models were used to investigate the efficacy and new mechanisms of chemotherapy combined with immunotherapy. <b>Results:</b> DOX improved tumor immunogenicity by alkalinizing lysosomes, inhibiting tumor cell autophagy and inducing ICD. HVs could activate dendritic cell maturation, synergistically enhancing chemotherapeutic immunity. <b>Conclusion:</b> The mechanism of DOX-induced ICD was explored, and antitumor immunity was synergistically activated by HV-DOX to improve chemotherapeutic drug loading and provide relevant antigenic information.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heating tumors with tumor cell-derived nanoparticles to enhance chemoimmunotherapy for colorectal cancer.\",\"authors\":\"Xin-Ying Li, Rong-Hui Li, Jun-Zi Cong, Wen-Shang Liu, Yang Zhang, Hui-Lin Guan, Ling-Ling Zhu, Kai Chen, Li-Ying Pang, Hong Jin\",\"doi\":\"10.2217/nnm-2023-0332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> To investigate the mechanism of doxorubicin (DOX)-induced immunogenic cell death (ICD) and to improve immunotherapy efficacy. <b>Materials & methods:</b> In this study, hybrid vesicles containing DOX (HV-DOX) were prepared by thin-film hydration with extrusion, and the formulated nanoparticles were characterized physically. Furthermore, <i>in vitro</i> experiments and animal models were used to investigate the efficacy and new mechanisms of chemotherapy combined with immunotherapy. <b>Results:</b> DOX improved tumor immunogenicity by alkalinizing lysosomes, inhibiting tumor cell autophagy and inducing ICD. HVs could activate dendritic cell maturation, synergistically enhancing chemotherapeutic immunity. <b>Conclusion:</b> The mechanism of DOX-induced ICD was explored, and antitumor immunity was synergistically activated by HV-DOX to improve chemotherapeutic drug loading and provide relevant antigenic information.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/nnm-2023-0332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/nnm-2023-0332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究多柔比星(DOX)诱导免疫原性细胞死亡(ICD)的机制,提高免疫疗法的疗效。材料与方法:本研究采用薄膜水合挤压法制备了含 DOX(HV-DOX)的混合囊泡,并对制备的纳米颗粒进行了物理表征。此外,还利用体外实验和动物模型研究了化疗联合免疫疗法的疗效和新机制。结果显示DOX 通过碱化溶酶体、抑制肿瘤细胞自噬和诱导 ICD 提高了肿瘤免疫原性。HVs 可激活树突状细胞成熟,协同增强化疗免疫。结论探讨了DOX诱导ICD的机制,HV-DOX可协同激活抗肿瘤免疫,改善化疗药物负荷并提供相关抗原信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heating tumors with tumor cell-derived nanoparticles to enhance chemoimmunotherapy for colorectal cancer.

Aim: To investigate the mechanism of doxorubicin (DOX)-induced immunogenic cell death (ICD) and to improve immunotherapy efficacy. Materials & methods: In this study, hybrid vesicles containing DOX (HV-DOX) were prepared by thin-film hydration with extrusion, and the formulated nanoparticles were characterized physically. Furthermore, in vitro experiments and animal models were used to investigate the efficacy and new mechanisms of chemotherapy combined with immunotherapy. Results: DOX improved tumor immunogenicity by alkalinizing lysosomes, inhibiting tumor cell autophagy and inducing ICD. HVs could activate dendritic cell maturation, synergistically enhancing chemotherapeutic immunity. Conclusion: The mechanism of DOX-induced ICD was explored, and antitumor immunity was synergistically activated by HV-DOX to improve chemotherapeutic drug loading and provide relevant antigenic information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信