Jingyi Xu, Sihan Lin, Hongyan Chen, Guangzheng Yang, Mingliang Zhou, Yili Liu, Anshuo Li, Shi Yin, Xinquan Jiang
{"title":"高活性冷冻纳米微粒微针通过抗菌、免疫疗法和皮肤再生促进老年性伤口愈合","authors":"Jingyi Xu, Sihan Lin, Hongyan Chen, Guangzheng Yang, Mingliang Zhou, Yili Liu, Anshuo Li, Shi Yin, Xinquan Jiang","doi":"10.1002/adhm.202304315","DOIUrl":null,"url":null,"abstract":"<p>Senile wound healing risks a variety of health complications and makes both economic and psychological burdens on patients greatly. Poor activity of aged dermal fibroblasts (A-FBs) and local disordered immunoreaction in the deep dermis contribute to delayed wound healing. Therefore, the locally complex microenvironment in deep requires additional processing. Herein, a novel double-layer hyaluronic acid methacrylate (HAMA)/polyvinyl alcohol (PVA) microneedle patch (MNP) coated by young fibroblast-derived exosomes (Y-EXOs) (Y-EXOs@HAMA/PVA MNP) is presented for deep drug delivery, aged wound healing and immunoregulation. A spraying and freeze-drying method is applied for keeping the bioactivity of the nanovesicles. An ideal loading of Y-EXOs and enhanced strength for penetration have realized after circulation for times. The Y-EXOs@HAMA/PVA MNP shows an excellent influence on delayed wound healing of aged skin with active A-FBs, more deposition of collagen and less production of IL-17A compared with application of aged fibroblast-derived exosomes (A-EXOs). Moreover, the content microRNAs in Y-EXOs and A-EXOs are sequenced for further study. This study initiatively demonstrates that Y-EXOs have effective function on both anti-aging and anti-inflammation and Y-EXOs@HAMA/PVA MNP is expected as a novel strategy for deep drug delivery for promoting hard wound healing in aged skin in future clinical application.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"13 12","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Active Frozen Nanovesicles Microneedles for Senile Wound Healing via Antibacteria, Immunotherapy, and Skin Regeneration\",\"authors\":\"Jingyi Xu, Sihan Lin, Hongyan Chen, Guangzheng Yang, Mingliang Zhou, Yili Liu, Anshuo Li, Shi Yin, Xinquan Jiang\",\"doi\":\"10.1002/adhm.202304315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Senile wound healing risks a variety of health complications and makes both economic and psychological burdens on patients greatly. Poor activity of aged dermal fibroblasts (A-FBs) and local disordered immunoreaction in the deep dermis contribute to delayed wound healing. Therefore, the locally complex microenvironment in deep requires additional processing. Herein, a novel double-layer hyaluronic acid methacrylate (HAMA)/polyvinyl alcohol (PVA) microneedle patch (MNP) coated by young fibroblast-derived exosomes (Y-EXOs) (Y-EXOs@HAMA/PVA MNP) is presented for deep drug delivery, aged wound healing and immunoregulation. A spraying and freeze-drying method is applied for keeping the bioactivity of the nanovesicles. An ideal loading of Y-EXOs and enhanced strength for penetration have realized after circulation for times. The Y-EXOs@HAMA/PVA MNP shows an excellent influence on delayed wound healing of aged skin with active A-FBs, more deposition of collagen and less production of IL-17A compared with application of aged fibroblast-derived exosomes (A-EXOs). Moreover, the content microRNAs in Y-EXOs and A-EXOs are sequenced for further study. This study initiatively demonstrates that Y-EXOs have effective function on both anti-aging and anti-inflammation and Y-EXOs@HAMA/PVA MNP is expected as a novel strategy for deep drug delivery for promoting hard wound healing in aged skin in future clinical application.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202304315\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202304315","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Highly Active Frozen Nanovesicles Microneedles for Senile Wound Healing via Antibacteria, Immunotherapy, and Skin Regeneration
Senile wound healing risks a variety of health complications and makes both economic and psychological burdens on patients greatly. Poor activity of aged dermal fibroblasts (A-FBs) and local disordered immunoreaction in the deep dermis contribute to delayed wound healing. Therefore, the locally complex microenvironment in deep requires additional processing. Herein, a novel double-layer hyaluronic acid methacrylate (HAMA)/polyvinyl alcohol (PVA) microneedle patch (MNP) coated by young fibroblast-derived exosomes (Y-EXOs) (Y-EXOs@HAMA/PVA MNP) is presented for deep drug delivery, aged wound healing and immunoregulation. A spraying and freeze-drying method is applied for keeping the bioactivity of the nanovesicles. An ideal loading of Y-EXOs and enhanced strength for penetration have realized after circulation for times. The Y-EXOs@HAMA/PVA MNP shows an excellent influence on delayed wound healing of aged skin with active A-FBs, more deposition of collagen and less production of IL-17A compared with application of aged fibroblast-derived exosomes (A-EXOs). Moreover, the content microRNAs in Y-EXOs and A-EXOs are sequenced for further study. This study initiatively demonstrates that Y-EXOs have effective function on both anti-aging and anti-inflammation and Y-EXOs@HAMA/PVA MNP is expected as a novel strategy for deep drug delivery for promoting hard wound healing in aged skin in future clinical application.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.