合成用于去除水介质中溴甲酚绿和孔雀石绿的三甲氧苄啶香兰素锚定共轭印迹聚合物

IF 3.7 Q1 WATER RESOURCES
Kehinde Nurudeen Awokoya , Vincent Olukayode Oninla , Tunmise Tunrayo Eugene-Osoikhia , Uloma Ogonnaya Njionye , Aderonke Adetutu Okoya , Gbadebo Clement Adeyinka , Odor Chioma
{"title":"合成用于去除水介质中溴甲酚绿和孔雀石绿的三甲氧苄啶香兰素锚定共轭印迹聚合物","authors":"Kehinde Nurudeen Awokoya ,&nbsp;Vincent Olukayode Oninla ,&nbsp;Tunmise Tunrayo Eugene-Osoikhia ,&nbsp;Uloma Ogonnaya Njionye ,&nbsp;Aderonke Adetutu Okoya ,&nbsp;Gbadebo Clement Adeyinka ,&nbsp;Odor Chioma","doi":"10.1016/j.wse.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Bromocresol green (BCG) and malachite green (MG) are water-soluble toxic organic dyes with adverse health and environmental implications. This study presented a conjugate imprinted adsorbent (CIA) synthesized by incorporating trimethoprim vanillin ligand into a highly crosslinked polymer, designed for the efficient removal of BCG and MG from wastewater. Characterization of CIA involved X-ray powder diffraction, Fourier transform infrared, and scanning electron microscopic analyses. Batch adsorption processes were conducted to evaluate the adsorption characteristics of CIA, with focuses on the effects of contact time, initial dye concentration, pH, and temperature. The molecularly imprinted polymers (MIPs) achieved removal efficiencies of 99.27% and 98.99% at equilibrium for BCG and MG adsorption, respectively. The non-imprinted polymers (NIPs) demonstrated BCG and MG adsorption efficiencies of 51.52% and 62.90% at equilibrium, respectively. Kinetic and isotherm models were employed to elucidate the BCG and MG adsorption mechanisms. The thermodynamic results indicated non-spontaneous and spontaneous reactions for BCG and MG adsorption on MIPs under the examined temperature conditions. The adsorbent exhibited sustained high removal efficiency through five reuse cycles, with no apparent reduction in adsorption performance. Validation of the adsorbent using real textile wastewater samples achieved BCG and MG removal efficiencies of 85.5%–87.5%. The adsorbent outperformed previously reported materials in BCG and MG adsorption. The synthesized CIA is a promising adsorbent for BCG and MG dye removal, contributing to water sustainability.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"18 1","pages":"Pages 11-20"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of trimethoprim vanillin anchored conjugate imprinted polymers for removal of bromocresol green and malachite green from aqueous media\",\"authors\":\"Kehinde Nurudeen Awokoya ,&nbsp;Vincent Olukayode Oninla ,&nbsp;Tunmise Tunrayo Eugene-Osoikhia ,&nbsp;Uloma Ogonnaya Njionye ,&nbsp;Aderonke Adetutu Okoya ,&nbsp;Gbadebo Clement Adeyinka ,&nbsp;Odor Chioma\",\"doi\":\"10.1016/j.wse.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bromocresol green (BCG) and malachite green (MG) are water-soluble toxic organic dyes with adverse health and environmental implications. This study presented a conjugate imprinted adsorbent (CIA) synthesized by incorporating trimethoprim vanillin ligand into a highly crosslinked polymer, designed for the efficient removal of BCG and MG from wastewater. Characterization of CIA involved X-ray powder diffraction, Fourier transform infrared, and scanning electron microscopic analyses. Batch adsorption processes were conducted to evaluate the adsorption characteristics of CIA, with focuses on the effects of contact time, initial dye concentration, pH, and temperature. The molecularly imprinted polymers (MIPs) achieved removal efficiencies of 99.27% and 98.99% at equilibrium for BCG and MG adsorption, respectively. The non-imprinted polymers (NIPs) demonstrated BCG and MG adsorption efficiencies of 51.52% and 62.90% at equilibrium, respectively. Kinetic and isotherm models were employed to elucidate the BCG and MG adsorption mechanisms. The thermodynamic results indicated non-spontaneous and spontaneous reactions for BCG and MG adsorption on MIPs under the examined temperature conditions. The adsorbent exhibited sustained high removal efficiency through five reuse cycles, with no apparent reduction in adsorption performance. Validation of the adsorbent using real textile wastewater samples achieved BCG and MG removal efficiencies of 85.5%–87.5%. The adsorbent outperformed previously reported materials in BCG and MG adsorption. The synthesized CIA is a promising adsorbent for BCG and MG dye removal, contributing to water sustainability.</div></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"18 1\",\"pages\":\"Pages 11-20\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237024000218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of trimethoprim vanillin anchored conjugate imprinted polymers for removal of bromocresol green and malachite green from aqueous media
Bromocresol green (BCG) and malachite green (MG) are water-soluble toxic organic dyes with adverse health and environmental implications. This study presented a conjugate imprinted adsorbent (CIA) synthesized by incorporating trimethoprim vanillin ligand into a highly crosslinked polymer, designed for the efficient removal of BCG and MG from wastewater. Characterization of CIA involved X-ray powder diffraction, Fourier transform infrared, and scanning electron microscopic analyses. Batch adsorption processes were conducted to evaluate the adsorption characteristics of CIA, with focuses on the effects of contact time, initial dye concentration, pH, and temperature. The molecularly imprinted polymers (MIPs) achieved removal efficiencies of 99.27% and 98.99% at equilibrium for BCG and MG adsorption, respectively. The non-imprinted polymers (NIPs) demonstrated BCG and MG adsorption efficiencies of 51.52% and 62.90% at equilibrium, respectively. Kinetic and isotherm models were employed to elucidate the BCG and MG adsorption mechanisms. The thermodynamic results indicated non-spontaneous and spontaneous reactions for BCG and MG adsorption on MIPs under the examined temperature conditions. The adsorbent exhibited sustained high removal efficiency through five reuse cycles, with no apparent reduction in adsorption performance. Validation of the adsorbent using real textile wastewater samples achieved BCG and MG removal efficiencies of 85.5%–87.5%. The adsorbent outperformed previously reported materials in BCG and MG adsorption. The synthesized CIA is a promising adsorbent for BCG and MG dye removal, contributing to water sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信