{"title":"利用管道流变仪测量校准触变性和粘弹性剪切稀化流体","authors":"E. Cayeux","doi":"10.3390/fluids9010023","DOIUrl":null,"url":null,"abstract":"Some non-Newtonian fluids have time-dependent rheological properties like a shear stress that depends on the shear history or a stress overshoot that is a function of the resting time, when fluid movement is started. The rheological properties of such complex fluids may not stay constant while they are used in an industrial process, and it is therefore desirable to measure these properties frequently and with a simple and robust device like a pipe rheometer. This paper investigated how the time-dependent rheological properties of a thixotropic and viscoelastic shear-thinning fluid can be extracted from differential pressure measurements obtained at different flowrates along a circular pipe section. The method consists in modeling the flow of a thixotropic version of a Quemada fluid and solving the inverse problem in order to find the model parameters using the measurements made in steady-state conditions. Also, a Maxwell linear viscoelastic model was used to reproduce the stress overshoot observed when starting circulation after a resting period. The pipe rheometer was designed to have the proper features necessary to exhibit the thixotropic and viscoelastic effects that were needed to calibrate the rheological model parameters. The accuracy of rheological measurements depends on understanding the effects that can influence the observations and on a proper design that takes advantage of these side effects instead of attempting to eliminate them.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"62 29","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of Thixotropic and Viscoelastic Shear-Thinning Fluids Using Pipe Rheometer Measurements\",\"authors\":\"E. Cayeux\",\"doi\":\"10.3390/fluids9010023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some non-Newtonian fluids have time-dependent rheological properties like a shear stress that depends on the shear history or a stress overshoot that is a function of the resting time, when fluid movement is started. The rheological properties of such complex fluids may not stay constant while they are used in an industrial process, and it is therefore desirable to measure these properties frequently and with a simple and robust device like a pipe rheometer. This paper investigated how the time-dependent rheological properties of a thixotropic and viscoelastic shear-thinning fluid can be extracted from differential pressure measurements obtained at different flowrates along a circular pipe section. The method consists in modeling the flow of a thixotropic version of a Quemada fluid and solving the inverse problem in order to find the model parameters using the measurements made in steady-state conditions. Also, a Maxwell linear viscoelastic model was used to reproduce the stress overshoot observed when starting circulation after a resting period. The pipe rheometer was designed to have the proper features necessary to exhibit the thixotropic and viscoelastic effects that were needed to calibrate the rheological model parameters. The accuracy of rheological measurements depends on understanding the effects that can influence the observations and on a proper design that takes advantage of these side effects instead of attempting to eliminate them.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"62 29\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids9010023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9010023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Calibration of Thixotropic and Viscoelastic Shear-Thinning Fluids Using Pipe Rheometer Measurements
Some non-Newtonian fluids have time-dependent rheological properties like a shear stress that depends on the shear history or a stress overshoot that is a function of the resting time, when fluid movement is started. The rheological properties of such complex fluids may not stay constant while they are used in an industrial process, and it is therefore desirable to measure these properties frequently and with a simple and robust device like a pipe rheometer. This paper investigated how the time-dependent rheological properties of a thixotropic and viscoelastic shear-thinning fluid can be extracted from differential pressure measurements obtained at different flowrates along a circular pipe section. The method consists in modeling the flow of a thixotropic version of a Quemada fluid and solving the inverse problem in order to find the model parameters using the measurements made in steady-state conditions. Also, a Maxwell linear viscoelastic model was used to reproduce the stress overshoot observed when starting circulation after a resting period. The pipe rheometer was designed to have the proper features necessary to exhibit the thixotropic and viscoelastic effects that were needed to calibrate the rheological model parameters. The accuracy of rheological measurements depends on understanding the effects that can influence the observations and on a proper design that takes advantage of these side effects instead of attempting to eliminate them.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.