K. Javid, Kamel Al-khaled, Saleem Khan, Sami Ullah Khan, Nesrine Zahi, Chemseddine Maatki, Karim Kriaa, L. Kolsi
{"title":"倾斜磁场下粘弹性纳米流体的纤毛辅助流动的传热效应:润滑近似","authors":"K. Javid, Kamel Al-khaled, Saleem Khan, Sami Ullah Khan, Nesrine Zahi, Chemseddine Maatki, Karim Kriaa, L. Kolsi","doi":"10.24200/sci.2024.61506.7344","DOIUrl":null,"url":null,"abstract":": A numerical study has been investigated for magnetohydrodynamics (MHD) pumping of viscoelastic nanofluid by means of heat transfer in a complex ciliated channel. The Jeffrey model is followed as a non-Newtonian fluid (blood) in current investigations because of its dual characteristics: one is viscosity effects and the second is elastic in nature. The fluid motion is parallel to the direction of metachronal waves. The metachronal waves are mobilized by the cilia transport. The magnetic force reflection with horizontal angle in inclined direction is implemented. The system identifying via distinct equations is expressed in wave frame which is further normalized the flow system by using scaling quantities. In the next step, the normalized form of rheological equations","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer effects on cilia-assisted flow of viscoelastic nanofluid under an inclined magnetic field: Lubrication approximations\",\"authors\":\"K. Javid, Kamel Al-khaled, Saleem Khan, Sami Ullah Khan, Nesrine Zahi, Chemseddine Maatki, Karim Kriaa, L. Kolsi\",\"doi\":\"10.24200/sci.2024.61506.7344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": A numerical study has been investigated for magnetohydrodynamics (MHD) pumping of viscoelastic nanofluid by means of heat transfer in a complex ciliated channel. The Jeffrey model is followed as a non-Newtonian fluid (blood) in current investigations because of its dual characteristics: one is viscosity effects and the second is elastic in nature. The fluid motion is parallel to the direction of metachronal waves. The metachronal waves are mobilized by the cilia transport. The magnetic force reflection with horizontal angle in inclined direction is implemented. The system identifying via distinct equations is expressed in wave frame which is further normalized the flow system by using scaling quantities. In the next step, the normalized form of rheological equations\",\"PeriodicalId\":21605,\"journal\":{\"name\":\"Scientia Iranica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Iranica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2024.61506.7344\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2024.61506.7344","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat transfer effects on cilia-assisted flow of viscoelastic nanofluid under an inclined magnetic field: Lubrication approximations
: A numerical study has been investigated for magnetohydrodynamics (MHD) pumping of viscoelastic nanofluid by means of heat transfer in a complex ciliated channel. The Jeffrey model is followed as a non-Newtonian fluid (blood) in current investigations because of its dual characteristics: one is viscosity effects and the second is elastic in nature. The fluid motion is parallel to the direction of metachronal waves. The metachronal waves are mobilized by the cilia transport. The magnetic force reflection with horizontal angle in inclined direction is implemented. The system identifying via distinct equations is expressed in wave frame which is further normalized the flow system by using scaling quantities. In the next step, the normalized form of rheological equations
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.