Vasa Vijaya Kumar, Mamidi Narsimha Raja Shekar, B Shankar Goud
{"title":"热量和质量传递对存在化学反应和热量生成的垂直多孔板上 MHD 流动的影响","authors":"Vasa Vijaya Kumar, Mamidi Narsimha Raja Shekar, B Shankar Goud","doi":"10.37934/cfdl.16.5.920","DOIUrl":null,"url":null,"abstract":"Numerical solutions to the problems of heat generation and chemical reaction as well as heat and mass transfer in a 2-D viscous, electrically conducting fluid oscillating through an infinite vertical permeable moving plate in a saturated porous material subject to a transverse magnetic field are considered. The flow equations explain how things work by the Finite Difference Method (FDM). The impacts of different flow factors on flow fields are talked about. It has been found that the velocity of the fluid goes up as both the chemical reaction and the permeability factors increase. Although it keeps rising as the magnetic field factor declines. Also, the concentration keeps enhancing as the chemical reaction factors increase.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"40 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat and Mass Transfer Significance on MHD Flow over a Vertical Porous Plate in the Presence of Chemical Reaction and Heat Generation\",\"authors\":\"Vasa Vijaya Kumar, Mamidi Narsimha Raja Shekar, B Shankar Goud\",\"doi\":\"10.37934/cfdl.16.5.920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical solutions to the problems of heat generation and chemical reaction as well as heat and mass transfer in a 2-D viscous, electrically conducting fluid oscillating through an infinite vertical permeable moving plate in a saturated porous material subject to a transverse magnetic field are considered. The flow equations explain how things work by the Finite Difference Method (FDM). The impacts of different flow factors on flow fields are talked about. It has been found that the velocity of the fluid goes up as both the chemical reaction and the permeability factors increase. Although it keeps rising as the magnetic field factor declines. Also, the concentration keeps enhancing as the chemical reaction factors increase.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"40 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.5.920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.5.920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Heat and Mass Transfer Significance on MHD Flow over a Vertical Porous Plate in the Presence of Chemical Reaction and Heat Generation
Numerical solutions to the problems of heat generation and chemical reaction as well as heat and mass transfer in a 2-D viscous, electrically conducting fluid oscillating through an infinite vertical permeable moving plate in a saturated porous material subject to a transverse magnetic field are considered. The flow equations explain how things work by the Finite Difference Method (FDM). The impacts of different flow factors on flow fields are talked about. It has been found that the velocity of the fluid goes up as both the chemical reaction and the permeability factors increase. Although it keeps rising as the magnetic field factor declines. Also, the concentration keeps enhancing as the chemical reaction factors increase.