镁锂合金薄壁筋网状零件铣削过程中的加工诱发残余应力和变形

IF 1.9 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Zhijun Chen, Lingyun Qian, Xiaoyuan Ji, Qingdong Zhang, Tengbowen Wei, Jingju Chen, Sufeng Hao
{"title":"镁锂合金薄壁筋网状零件铣削过程中的加工诱发残余应力和变形","authors":"Zhijun Chen, Lingyun Qian, Xiaoyuan Ji, Qingdong Zhang, Tengbowen Wei, Jingju Chen, Sufeng Hao","doi":"10.1177/09544054231222050","DOIUrl":null,"url":null,"abstract":"The deformation of thin-walled parts based on the lightweight Mg–Li alloy materials caused by machining-induced stress is an important factor hindering the further development of lightweight in the aerospace field. Prediction of the machining-induced residual stress is the key to understand the deformation and derive low-stress machining scheme. In this study, the equivalent cutting deformation loads were applied to substitute the strongly coupled thermal-mechanical behavior between the tool and part to realize the prediction of the machining-induced stress and deformation of thin-walled rib-web part under different milling conditions. The local regular and complex rib-web parts share a same deformation mode, both behave as in-plane bending deformation of the machined surface. The low-stress milling scheme of up milling combined with cryogenic cooling obtained based on the local regular four rid-web thin-walled part was applicable to the prediction of the complex Mg-Li alloy disk rib-web part. Compared with the initial scheme, the maximum stress and deformation displacement based on the low-stress scheme were reduced from 80 to 36 MPa and from 0.04060 to 0.00814 mm, respectively. Finally, the effectiveness of low-stress milling scheme were verified based on the milling and measurement experiments of the complex thin-walled disk rib-web part. These results indicate the effectiveness of the modeling method for thin-walled rib-web parts and prove the results obtained based on the local model can be extended and applied to large complex parts with the same structural type.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machining-induced residual stress and deformation during Mg–Li alloy thin-walled rib-web parts milling\",\"authors\":\"Zhijun Chen, Lingyun Qian, Xiaoyuan Ji, Qingdong Zhang, Tengbowen Wei, Jingju Chen, Sufeng Hao\",\"doi\":\"10.1177/09544054231222050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deformation of thin-walled parts based on the lightweight Mg–Li alloy materials caused by machining-induced stress is an important factor hindering the further development of lightweight in the aerospace field. Prediction of the machining-induced residual stress is the key to understand the deformation and derive low-stress machining scheme. In this study, the equivalent cutting deformation loads were applied to substitute the strongly coupled thermal-mechanical behavior between the tool and part to realize the prediction of the machining-induced stress and deformation of thin-walled rib-web part under different milling conditions. The local regular and complex rib-web parts share a same deformation mode, both behave as in-plane bending deformation of the machined surface. The low-stress milling scheme of up milling combined with cryogenic cooling obtained based on the local regular four rid-web thin-walled part was applicable to the prediction of the complex Mg-Li alloy disk rib-web part. Compared with the initial scheme, the maximum stress and deformation displacement based on the low-stress scheme were reduced from 80 to 36 MPa and from 0.04060 to 0.00814 mm, respectively. Finally, the effectiveness of low-stress milling scheme were verified based on the milling and measurement experiments of the complex thin-walled disk rib-web part. These results indicate the effectiveness of the modeling method for thin-walled rib-web parts and prove the results obtained based on the local model can be extended and applied to large complex parts with the same structural type.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231222050\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231222050","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

基于轻质镁锂合金材料的薄壁零件因加工诱导应力而产生的变形是阻碍航空航天领域轻质化进一步发展的重要因素。预测加工引起的残余应力是了解变形和推导低应力加工方案的关键。本研究采用等效切削变形载荷替代刀具与零件之间的强耦合热机械行为,实现了薄壁筋网零件在不同铣削条件下的加工诱导应力和变形预测。局部规则和复杂筋网零件具有相同的变形模式,都表现为加工表面的面内弯曲变形。在局部规则四肋薄壁零件基础上得到的上铣结合低温冷却的低应力铣削方案适用于复杂镁锂合金盘状肋网零件的预测。与初始方案相比,基于低应力方案的最大应力和变形位移分别从 80 MPa 降至 36 MPa 和从 0.04060 mm 降至 0.00814 mm。最后,通过对复杂薄壁圆盘筋网零件的铣削和测量实验,验证了低应力铣削方案的有效性。这些结果表明了该建模方法在薄壁筋网零件中的有效性,并证明了基于局部模型所获得的结果可以扩展并应用于具有相同结构类型的大型复杂零件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machining-induced residual stress and deformation during Mg–Li alloy thin-walled rib-web parts milling
The deformation of thin-walled parts based on the lightweight Mg–Li alloy materials caused by machining-induced stress is an important factor hindering the further development of lightweight in the aerospace field. Prediction of the machining-induced residual stress is the key to understand the deformation and derive low-stress machining scheme. In this study, the equivalent cutting deformation loads were applied to substitute the strongly coupled thermal-mechanical behavior between the tool and part to realize the prediction of the machining-induced stress and deformation of thin-walled rib-web part under different milling conditions. The local regular and complex rib-web parts share a same deformation mode, both behave as in-plane bending deformation of the machined surface. The low-stress milling scheme of up milling combined with cryogenic cooling obtained based on the local regular four rid-web thin-walled part was applicable to the prediction of the complex Mg-Li alloy disk rib-web part. Compared with the initial scheme, the maximum stress and deformation displacement based on the low-stress scheme were reduced from 80 to 36 MPa and from 0.04060 to 0.00814 mm, respectively. Finally, the effectiveness of low-stress milling scheme were verified based on the milling and measurement experiments of the complex thin-walled disk rib-web part. These results indicate the effectiveness of the modeling method for thin-walled rib-web parts and prove the results obtained based on the local model can be extended and applied to large complex parts with the same structural type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
30.80%
发文量
167
审稿时长
5.1 months
期刊介绍: Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed. Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing. Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信