Long Nguyen Ngoc, Lan Nguyen Chau, Thanh Bui Tien, Nhung Nguyen Thi Cam
{"title":"评估河内路堤建设施工引起的振动对附近结构的影响","authors":"Long Nguyen Ngoc, Lan Nguyen Chau, Thanh Bui Tien, Nhung Nguyen Thi Cam","doi":"10.47869/tcsj.75.1.3","DOIUrl":null,"url":null,"abstract":"Vietnam is currently undertaking numerous transportation and infrastructure projects in urban areas, particularly in densely populated cities such as Hanoi and Ho Chi Minh City. These cities have high traffic density and frequent traffic congestion, which necessitates the use of construction equipment such as vibratory rollers and pile drivers. However, these machines can cause vibrations that affect the surrounding structures. This study investigates the impact of roller compaction-induced vibration on the building structure of Ring road No.2 in Hanoi, Vietnam. The finite element method (Plaxis 2D) was applied to evaluate the impact of vibration on surrounding structures. The maximum measured velocity is similar to the values derived from numerical analysis. The Finite element method (FEM) results exhibited a high degree of correlation with the actual velocity measurement and frequency dominant structure responses caused by ground-borne vibration induced by roller compaction within the frequency range of 5 Hz to 10 Hz.","PeriodicalId":235443,"journal":{"name":"Transport and Communications Science Journal","volume":"21 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the impact of construction-induced vibration on nearby structures when building road embankment in Hanoi\",\"authors\":\"Long Nguyen Ngoc, Lan Nguyen Chau, Thanh Bui Tien, Nhung Nguyen Thi Cam\",\"doi\":\"10.47869/tcsj.75.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vietnam is currently undertaking numerous transportation and infrastructure projects in urban areas, particularly in densely populated cities such as Hanoi and Ho Chi Minh City. These cities have high traffic density and frequent traffic congestion, which necessitates the use of construction equipment such as vibratory rollers and pile drivers. However, these machines can cause vibrations that affect the surrounding structures. This study investigates the impact of roller compaction-induced vibration on the building structure of Ring road No.2 in Hanoi, Vietnam. The finite element method (Plaxis 2D) was applied to evaluate the impact of vibration on surrounding structures. The maximum measured velocity is similar to the values derived from numerical analysis. The Finite element method (FEM) results exhibited a high degree of correlation with the actual velocity measurement and frequency dominant structure responses caused by ground-borne vibration induced by roller compaction within the frequency range of 5 Hz to 10 Hz.\",\"PeriodicalId\":235443,\"journal\":{\"name\":\"Transport and Communications Science Journal\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport and Communications Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47869/tcsj.75.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Communications Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47869/tcsj.75.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the impact of construction-induced vibration on nearby structures when building road embankment in Hanoi
Vietnam is currently undertaking numerous transportation and infrastructure projects in urban areas, particularly in densely populated cities such as Hanoi and Ho Chi Minh City. These cities have high traffic density and frequent traffic congestion, which necessitates the use of construction equipment such as vibratory rollers and pile drivers. However, these machines can cause vibrations that affect the surrounding structures. This study investigates the impact of roller compaction-induced vibration on the building structure of Ring road No.2 in Hanoi, Vietnam. The finite element method (Plaxis 2D) was applied to evaluate the impact of vibration on surrounding structures. The maximum measured velocity is similar to the values derived from numerical analysis. The Finite element method (FEM) results exhibited a high degree of correlation with the actual velocity measurement and frequency dominant structure responses caused by ground-borne vibration induced by roller compaction within the frequency range of 5 Hz to 10 Hz.