$${mathbb {R}}$ 中 $$\psi $$-Riemann-Liouville 和 $$\psi $$-Riemann-Liouville 钢化分数积分的一些有界性结果

IF 0.8 Q2 MATHEMATICS
César E. Torres Ledesma, Jesús A. Rodríguez, Felipe A. Zuñiga
{"title":"$${mathbb {R}}$ 中 $$\\psi $$-Riemann-Liouville 和 $$\\psi $$-Riemann-Liouville 钢化分数积分的一些有界性结果","authors":"César E. Torres Ledesma,&nbsp;Jesús A. Rodríguez,&nbsp;Felipe A. Zuñiga","doi":"10.1007/s43036-023-00310-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, using Hardy–Littlewood maximal function, we deal with the boundedness of the <span>\\(\\psi \\)</span>-Riemann–Liouville in Lebesgue and weighted Lebesgue space in the real line. Moreover, we consider the boundedness of <span>\\(\\psi \\)</span>-Riemann–Liouville tempered fractional integrals in weighted Lebesgue space in the real line.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some boundedness results for \\\\(\\\\psi \\\\)-Riemann–Liouville and \\\\(\\\\psi \\\\)-Riemann–Liouville tempered fractional integrals in \\\\({\\\\mathbb {R}}\\\\)\",\"authors\":\"César E. Torres Ledesma,&nbsp;Jesús A. Rodríguez,&nbsp;Felipe A. Zuñiga\",\"doi\":\"10.1007/s43036-023-00310-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, using Hardy–Littlewood maximal function, we deal with the boundedness of the <span>\\\\(\\\\psi \\\\)</span>-Riemann–Liouville in Lebesgue and weighted Lebesgue space in the real line. Moreover, we consider the boundedness of <span>\\\\(\\\\psi \\\\)</span>-Riemann–Liouville tempered fractional integrals in weighted Lebesgue space in the real line.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-023-00310-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-023-00310-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用哈代-利特尔伍德(Hardy-Littlewood)最大函数,处理了实线上 Lebesgue 空间和加权 Lebesgue 空间中的\(\psi\)-Riemann-Liouville 有界性问题。此外,我们还考虑了实线上加权 Lebesgue 空间中的\(\psi \)-Riemann-Liouville有界分数积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some boundedness results for \(\psi \)-Riemann–Liouville and \(\psi \)-Riemann–Liouville tempered fractional integrals in \({\mathbb {R}}\)

In this paper, using Hardy–Littlewood maximal function, we deal with the boundedness of the \(\psi \)-Riemann–Liouville in Lebesgue and weighted Lebesgue space in the real line. Moreover, we consider the boundedness of \(\psi \)-Riemann–Liouville tempered fractional integrals in weighted Lebesgue space in the real line.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信