César E. Torres Ledesma, Jesús A. Rodríguez, Felipe A. Zuñiga
{"title":"$${mathbb {R}}$ 中 $$\\psi $$-Riemann-Liouville 和 $$\\psi $$-Riemann-Liouville 钢化分数积分的一些有界性结果","authors":"César E. Torres Ledesma, Jesús A. Rodríguez, Felipe A. Zuñiga","doi":"10.1007/s43036-023-00310-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, using Hardy–Littlewood maximal function, we deal with the boundedness of the <span>\\(\\psi \\)</span>-Riemann–Liouville in Lebesgue and weighted Lebesgue space in the real line. Moreover, we consider the boundedness of <span>\\(\\psi \\)</span>-Riemann–Liouville tempered fractional integrals in weighted Lebesgue space in the real line.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some boundedness results for \\\\(\\\\psi \\\\)-Riemann–Liouville and \\\\(\\\\psi \\\\)-Riemann–Liouville tempered fractional integrals in \\\\({\\\\mathbb {R}}\\\\)\",\"authors\":\"César E. Torres Ledesma, Jesús A. Rodríguez, Felipe A. Zuñiga\",\"doi\":\"10.1007/s43036-023-00310-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, using Hardy–Littlewood maximal function, we deal with the boundedness of the <span>\\\\(\\\\psi \\\\)</span>-Riemann–Liouville in Lebesgue and weighted Lebesgue space in the real line. Moreover, we consider the boundedness of <span>\\\\(\\\\psi \\\\)</span>-Riemann–Liouville tempered fractional integrals in weighted Lebesgue space in the real line.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-023-00310-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-023-00310-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some boundedness results for \(\psi \)-Riemann–Liouville and \(\psi \)-Riemann–Liouville tempered fractional integrals in \({\mathbb {R}}\)
In this paper, using Hardy–Littlewood maximal function, we deal with the boundedness of the \(\psi \)-Riemann–Liouville in Lebesgue and weighted Lebesgue space in the real line. Moreover, we consider the boundedness of \(\psi \)-Riemann–Liouville tempered fractional integrals in weighted Lebesgue space in the real line.