P. Odera, O. I. Apeh, L. Yap, Matthews Siphiwe Mphuthi
{"title":"验证用于喀麦隆和南非选定地点精确准大地水准面建模的定制重力场模型","authors":"P. Odera, O. I. Apeh, L. Yap, Matthews Siphiwe Mphuthi","doi":"10.1515/jag-2023-0095","DOIUrl":null,"url":null,"abstract":"\n In this study, a tailored gravity-field model is developed to fit and recover local terrestrial gravity data by integrating gravity from global gravity-field models, residual gravity derived from topographic data and observed terrestrial gravity over two study sites in Africa (Cameroon and South Africa). During the modelling phase, two-thirds of the terrestrial gravity data is utilised, reserving the remaining one-third for validation purposes. Additionally, an independent validation is conducted by comparing computed quasigeoid models (derived from tailored gravity data) with height anomalies from GPS/levelling data over the two study sites. The accuracy of the tailored gravity model in reproducing observed gravity data is noteworthy, with a ±8.9 mGal accuracy for the study site in South Africa at 2867 test points and a ±10.4 mGal accuracy for the study site in Cameroon at 637 test points. Comparing height anomalies from GPS/levelling with the SATGQG quasigeoid model (developed from tailored gravity data) and the recent CDSM09A quasigeoid model at 11 GPS/levelling data points reveals comparable accuracies of ±0.10 m and ±0.05 m, for SATGQG and CDSM09A, respectively for the site in South Africa. For the Cameroon site, the differences between height anomalies from GPS/levelling and the CTGQG quasigeoid model (developed from tailored gravity data), along with the recent CGM20 quasigeoid model at 38 GPS/levelling data points, show practically equal accuracies of ±0.15 m for CTGQG and ±0.11 m for CGM20. These findings underscore the potential of tailored gravity-field model in developing accurate quasigeoid models, particularly in regions with limited gravity data coverage. This approach holds promise for gravity recovery and precise geoid modelling in developing countries and regions with insufficient coverage of terrestrial gravity data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"4 4","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a tailored gravity field model for precise quasigeoid modelling over selected sites in Cameroon and South Africa\",\"authors\":\"P. Odera, O. I. Apeh, L. Yap, Matthews Siphiwe Mphuthi\",\"doi\":\"10.1515/jag-2023-0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, a tailored gravity-field model is developed to fit and recover local terrestrial gravity data by integrating gravity from global gravity-field models, residual gravity derived from topographic data and observed terrestrial gravity over two study sites in Africa (Cameroon and South Africa). During the modelling phase, two-thirds of the terrestrial gravity data is utilised, reserving the remaining one-third for validation purposes. Additionally, an independent validation is conducted by comparing computed quasigeoid models (derived from tailored gravity data) with height anomalies from GPS/levelling data over the two study sites. The accuracy of the tailored gravity model in reproducing observed gravity data is noteworthy, with a ±8.9 mGal accuracy for the study site in South Africa at 2867 test points and a ±10.4 mGal accuracy for the study site in Cameroon at 637 test points. Comparing height anomalies from GPS/levelling with the SATGQG quasigeoid model (developed from tailored gravity data) and the recent CDSM09A quasigeoid model at 11 GPS/levelling data points reveals comparable accuracies of ±0.10 m and ±0.05 m, for SATGQG and CDSM09A, respectively for the site in South Africa. For the Cameroon site, the differences between height anomalies from GPS/levelling and the CTGQG quasigeoid model (developed from tailored gravity data), along with the recent CGM20 quasigeoid model at 38 GPS/levelling data points, show practically equal accuracies of ±0.15 m for CTGQG and ±0.11 m for CGM20. These findings underscore the potential of tailored gravity-field model in developing accurate quasigeoid models, particularly in regions with limited gravity data coverage. This approach holds promise for gravity recovery and precise geoid modelling in developing countries and regions with insufficient coverage of terrestrial gravity data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0095\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0095","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Validation of a tailored gravity field model for precise quasigeoid modelling over selected sites in Cameroon and South Africa
In this study, a tailored gravity-field model is developed to fit and recover local terrestrial gravity data by integrating gravity from global gravity-field models, residual gravity derived from topographic data and observed terrestrial gravity over two study sites in Africa (Cameroon and South Africa). During the modelling phase, two-thirds of the terrestrial gravity data is utilised, reserving the remaining one-third for validation purposes. Additionally, an independent validation is conducted by comparing computed quasigeoid models (derived from tailored gravity data) with height anomalies from GPS/levelling data over the two study sites. The accuracy of the tailored gravity model in reproducing observed gravity data is noteworthy, with a ±8.9 mGal accuracy for the study site in South Africa at 2867 test points and a ±10.4 mGal accuracy for the study site in Cameroon at 637 test points. Comparing height anomalies from GPS/levelling with the SATGQG quasigeoid model (developed from tailored gravity data) and the recent CDSM09A quasigeoid model at 11 GPS/levelling data points reveals comparable accuracies of ±0.10 m and ±0.05 m, for SATGQG and CDSM09A, respectively for the site in South Africa. For the Cameroon site, the differences between height anomalies from GPS/levelling and the CTGQG quasigeoid model (developed from tailored gravity data), along with the recent CGM20 quasigeoid model at 38 GPS/levelling data points, show practically equal accuracies of ±0.15 m for CTGQG and ±0.11 m for CGM20. These findings underscore the potential of tailored gravity-field model in developing accurate quasigeoid models, particularly in regions with limited gravity data coverage. This approach holds promise for gravity recovery and precise geoid modelling in developing countries and regions with insufficient coverage of terrestrial gravity data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.