VSC-HVDC 链路的鲁棒 H2$$ {H}_2 $$ 非线性模糊分散控制设计

Hoang-Trung Ngo, Elkhatib Kamal, Bogdan Marinescu, Florent Xavier
{"title":"VSC-HVDC 链路的鲁棒 H2$$ {H}_2 $$ 非线性模糊分散控制设计","authors":"Hoang-Trung Ngo,&nbsp;Elkhatib Kamal,&nbsp;Bogdan Marinescu,&nbsp;Florent Xavier","doi":"10.1002/adc2.184","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A Robust <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_2 $$</annotation>\n </semantics></math> Nonlinear Fuzzy Decentralized Controller (<math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_2 $$</annotation>\n </semantics></math> RNFDC) is proposed to improve the overall robustness and tracking ability of a VSC-HVDC link. The studied system is considered as composed by two overlapping nonlinear subsystems. The nonlinear interaction between the two subsystems is treated as a disturbance rejection problem by fuzzy control techniques. First, the Takagi Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the uncertain nonlinear system. Next, new stability conditions for a generalized class of uncertain HVDC systems are derived from robust control techniques based on Linear Matrix Inequalities (LMIs). The design method employs the so-called Parallel Distributed Compensation (PDC) to obtain <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_2 $$</annotation>\n </semantics></math> RNFDC gains based on LMIs.The efficiency and robustness of the proposed controllers are analytically proven and tested through validation simulations. The main contributions of this paper are: (i) resilience: in case of failure of one converter or loss of measures or controls, the control of the other converter is not affected; (ii) robustness is improved in order to provide good responses in case of network variations and HVDC line parameters changes; (iii) fuzzy techniques are adopted to handle nonlinearities and changes of operating conditions. The proposed <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_2 $$</annotation>\n </semantics></math> RNFDC is compared with Fuzzy H<math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo> </mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math> Decentralized State Feedback Control (<math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_2 $$</annotation>\n </semantics></math> NFDC) and <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_{\\infty } $$</annotation>\n </semantics></math> Linear Decentralized Control (<math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_{\\infty } $$</annotation>\n </semantics></math> LDC) in simulation to illustrate the control synthesis and its effectiveness.</p>\n </div>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.184","citationCount":"0","resultStr":"{\"title\":\"Robust H2 nonlinear fuzzy decentralized control design for a VSC-HVDC link\",\"authors\":\"Hoang-Trung Ngo,&nbsp;Elkhatib Kamal,&nbsp;Bogdan Marinescu,&nbsp;Florent Xavier\",\"doi\":\"10.1002/adc2.184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A Robust <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_2 $$</annotation>\\n </semantics></math> Nonlinear Fuzzy Decentralized Controller (<math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_2 $$</annotation>\\n </semantics></math> RNFDC) is proposed to improve the overall robustness and tracking ability of a VSC-HVDC link. The studied system is considered as composed by two overlapping nonlinear subsystems. The nonlinear interaction between the two subsystems is treated as a disturbance rejection problem by fuzzy control techniques. First, the Takagi Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the uncertain nonlinear system. Next, new stability conditions for a generalized class of uncertain HVDC systems are derived from robust control techniques based on Linear Matrix Inequalities (LMIs). The design method employs the so-called Parallel Distributed Compensation (PDC) to obtain <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_2 $$</annotation>\\n </semantics></math> RNFDC gains based on LMIs.The efficiency and robustness of the proposed controllers are analytically proven and tested through validation simulations. The main contributions of this paper are: (i) resilience: in case of failure of one converter or loss of measures or controls, the control of the other converter is not affected; (ii) robustness is improved in order to provide good responses in case of network variations and HVDC line parameters changes; (iii) fuzzy techniques are adopted to handle nonlinearities and changes of operating conditions. The proposed <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_2 $$</annotation>\\n </semantics></math> RNFDC is compared with Fuzzy H<math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo> </mo>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_2 $$</annotation>\\n </semantics></math> Decentralized State Feedback Control (<math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_2 $$</annotation>\\n </semantics></math> NFDC) and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_{\\\\infty } $$</annotation>\\n </semantics></math> Linear Decentralized Control (<math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_{\\\\infty } $$</annotation>\\n </semantics></math> LDC) in simulation to illustrate the control synthesis and its effectiveness.</p>\\n </div>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.184\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为提高 VSC-HVDC 链路的整体鲁棒性和跟踪能力,提出了一种鲁棒非线性模糊分散控制器(RNFDC)。所研究的系统由两个重叠的非线性子系统组成。两个子系统之间的非线性相互作用被视为模糊控制技术的干扰抑制问题。首先,采用高木杉野(TS)模糊模型对不确定的非线性系统进行模糊建模。接着,基于线性矩阵不等式(LMI)的鲁棒控制技术推导出了一类不确定高压直流系统的新稳定性条件。设计方法采用了所谓的并行分布式补偿 (PDC),以获得基于线性矩阵不等式的 RNFDC 增益。通过分析和验证仿真,证明了所提控制器的效率和鲁棒性。本文的主要贡献在于(i) 恢复能力:在一个变流器发生故障或失去措施或控制的情况下,另一个变流器的控制不受影响;(ii) 提高鲁棒性,以便在网络变化和高压直流线路参数变化的情况下提供良好的响应;(iii) 采用模糊技术处理非线性和运行条件的变化。在仿真中,将拟议的 RNFDC 与模糊 H 分散状态反馈控制(NFDC)和线性分散控制(LDC)进行了比较,以说明控制合成及其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust H2 nonlinear fuzzy decentralized control design for a VSC-HVDC link

A Robust H 2 $$ {H}_2 $$ Nonlinear Fuzzy Decentralized Controller ( H 2 $$ {H}_2 $$ RNFDC) is proposed to improve the overall robustness and tracking ability of a VSC-HVDC link. The studied system is considered as composed by two overlapping nonlinear subsystems. The nonlinear interaction between the two subsystems is treated as a disturbance rejection problem by fuzzy control techniques. First, the Takagi Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the uncertain nonlinear system. Next, new stability conditions for a generalized class of uncertain HVDC systems are derived from robust control techniques based on Linear Matrix Inequalities (LMIs). The design method employs the so-called Parallel Distributed Compensation (PDC) to obtain H 2 $$ {H}_2 $$ RNFDC gains based on LMIs.The efficiency and robustness of the proposed controllers are analytically proven and tested through validation simulations. The main contributions of this paper are: (i) resilience: in case of failure of one converter or loss of measures or controls, the control of the other converter is not affected; (ii) robustness is improved in order to provide good responses in case of network variations and HVDC line parameters changes; (iii) fuzzy techniques are adopted to handle nonlinearities and changes of operating conditions. The proposed H 2 $$ {H}_2 $$ RNFDC is compared with Fuzzy H 2 $$ {}_2 $$ Decentralized State Feedback Control ( H 2 $$ {H}_2 $$ NFDC) and H $$ {H}_{\infty } $$ Linear Decentralized Control ( H $$ {H}_{\infty } $$ LDC) in simulation to illustrate the control synthesis and its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信