{"title":"哌啶催化保护羰基化合物的创新方法对血管生成和炎症的影响","authors":"","doi":"10.25163/angiotherapy.819343","DOIUrl":null,"url":null,"abstract":"Introduction: This study explores the application of piperidine-catalyzed protection, an innovative technique, for safeguarding various carbonyl compounds functioning as acetals in a generic reaction. Specifically, we investigate the catalysis of 2-amino-1,3-propanediol-2-methyl with various aromatic aldehydes, leading to the production of cis and trans-5-methyl-2-(mono or di-substitutions-phenyl)-1,3-dioxane-5-amine. Methods: Identification of all newly formed products is achieved through the utilization of spectroscopic techniques, including IR, 1H-NMR, and 13C-NMR spectroscopy. Molecular interactions and potential therapeutic applications of compounds E1 and E2 are demonstrated with cAMP-specific phosphodiesterase (1zkl) and oxidized purine nucleoside triphosphate hydrolase (5ws7). Detailed structural analyses highlight specific hydrogen bonds, pi-pi stacked interactions, and alkyl contacts formed by these compounds with target proteins. A comprehensive bioinformatics approach involves GO enrichment, STRING protein-protein association networks, KEGG pathway analysis, and Reactome pathways to elucidate biological processes, molecular functions, and cellular components associated with the compounds. Results: Compounds E1 and E2 exhibit diverse enrichment profiles, suggesting their involvement in various signaling cascades, neurotransmission, immune responses, and cancer pathways. Comparative analysis of five compound pairs (A1/A2, B1/B2, C1/C2, D1/D2, E1/E2) reveals subtle distinctions in enrichment patterns, implying unique pharmacological advantages for each pair. Conclusion: This study introduces a separate investigation on piperidine-catalyzed protection of carbonyl groups in aldehydes, presenting a practical approach. Emphasizing the significance of understanding distinct biological signatures, our findings guide therapeutic applications and compound optimization, particularly in the context of anti-cancer therapeutics. The compounds show potential in modulating neuronal function, neurotransmission, cancer mechanisms, and immune responses, suggesting promising avenues for future research and development.","PeriodicalId":154960,"journal":{"name":"Journal of Angiotherapy","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Piperidine-Catalyzation in Protecting Carbonyl Compounds with Implications for Angiogenesis and Inflammation\",\"authors\":\"\",\"doi\":\"10.25163/angiotherapy.819343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: This study explores the application of piperidine-catalyzed protection, an innovative technique, for safeguarding various carbonyl compounds functioning as acetals in a generic reaction. Specifically, we investigate the catalysis of 2-amino-1,3-propanediol-2-methyl with various aromatic aldehydes, leading to the production of cis and trans-5-methyl-2-(mono or di-substitutions-phenyl)-1,3-dioxane-5-amine. Methods: Identification of all newly formed products is achieved through the utilization of spectroscopic techniques, including IR, 1H-NMR, and 13C-NMR spectroscopy. Molecular interactions and potential therapeutic applications of compounds E1 and E2 are demonstrated with cAMP-specific phosphodiesterase (1zkl) and oxidized purine nucleoside triphosphate hydrolase (5ws7). Detailed structural analyses highlight specific hydrogen bonds, pi-pi stacked interactions, and alkyl contacts formed by these compounds with target proteins. A comprehensive bioinformatics approach involves GO enrichment, STRING protein-protein association networks, KEGG pathway analysis, and Reactome pathways to elucidate biological processes, molecular functions, and cellular components associated with the compounds. Results: Compounds E1 and E2 exhibit diverse enrichment profiles, suggesting their involvement in various signaling cascades, neurotransmission, immune responses, and cancer pathways. Comparative analysis of five compound pairs (A1/A2, B1/B2, C1/C2, D1/D2, E1/E2) reveals subtle distinctions in enrichment patterns, implying unique pharmacological advantages for each pair. Conclusion: This study introduces a separate investigation on piperidine-catalyzed protection of carbonyl groups in aldehydes, presenting a practical approach. Emphasizing the significance of understanding distinct biological signatures, our findings guide therapeutic applications and compound optimization, particularly in the context of anti-cancer therapeutics. The compounds show potential in modulating neuronal function, neurotransmission, cancer mechanisms, and immune responses, suggesting promising avenues for future research and development.\",\"PeriodicalId\":154960,\"journal\":{\"name\":\"Journal of Angiotherapy\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Angiotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25163/angiotherapy.819343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Angiotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25163/angiotherapy.819343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Innovative Piperidine-Catalyzation in Protecting Carbonyl Compounds with Implications for Angiogenesis and Inflammation
Introduction: This study explores the application of piperidine-catalyzed protection, an innovative technique, for safeguarding various carbonyl compounds functioning as acetals in a generic reaction. Specifically, we investigate the catalysis of 2-amino-1,3-propanediol-2-methyl with various aromatic aldehydes, leading to the production of cis and trans-5-methyl-2-(mono or di-substitutions-phenyl)-1,3-dioxane-5-amine. Methods: Identification of all newly formed products is achieved through the utilization of spectroscopic techniques, including IR, 1H-NMR, and 13C-NMR spectroscopy. Molecular interactions and potential therapeutic applications of compounds E1 and E2 are demonstrated with cAMP-specific phosphodiesterase (1zkl) and oxidized purine nucleoside triphosphate hydrolase (5ws7). Detailed structural analyses highlight specific hydrogen bonds, pi-pi stacked interactions, and alkyl contacts formed by these compounds with target proteins. A comprehensive bioinformatics approach involves GO enrichment, STRING protein-protein association networks, KEGG pathway analysis, and Reactome pathways to elucidate biological processes, molecular functions, and cellular components associated with the compounds. Results: Compounds E1 and E2 exhibit diverse enrichment profiles, suggesting their involvement in various signaling cascades, neurotransmission, immune responses, and cancer pathways. Comparative analysis of five compound pairs (A1/A2, B1/B2, C1/C2, D1/D2, E1/E2) reveals subtle distinctions in enrichment patterns, implying unique pharmacological advantages for each pair. Conclusion: This study introduces a separate investigation on piperidine-catalyzed protection of carbonyl groups in aldehydes, presenting a practical approach. Emphasizing the significance of understanding distinct biological signatures, our findings guide therapeutic applications and compound optimization, particularly in the context of anti-cancer therapeutics. The compounds show potential in modulating neuronal function, neurotransmission, cancer mechanisms, and immune responses, suggesting promising avenues for future research and development.