{"title":"论顶点变换图的自动阶","authors":"Primož Potočnik , Micael Toledo , Gabriel Verret","doi":"10.1016/j.jctb.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate orders, longest cycles and the number of cycles of automorphisms of finite vertex-transitive graphs. In particular, we show that the order of every automorphism of a connected vertex-transitive graph with <em>n</em> vertices and of valence <em>d</em>, <span><math><mi>d</mi><mo>≤</mo><mn>4</mn></math></span>, is at most <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mi>n</mi></math></span> where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>9</mn></math></span>. Whether such a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> exists for valencies larger than 4 remains an unanswered question. Further, we prove that every automorphism <em>g</em> of a finite connected 3-valent vertex-transitive graph Γ, <span><math><mi>Γ</mi><mo>≇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>, has a regular orbit, that is, an orbit of <span><math><mo>〈</mo><mi>g</mi><mo>〉</mo></math></span> of length equal to the order of <em>g</em>. Moreover, we prove that in this case either Γ belongs to a well understood family of exceptional graphs or at least 5/12 of the vertices of Γ belong to a regular orbit of <em>g</em>. Finally, we give an upper bound on the number of orbits of a cyclic group of automorphisms <em>C</em> of a connected 3-valent vertex-transitive graph Γ in terms of the number of vertices of Γ and the length of a longest orbit of <em>C</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 123-153"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000029/pdfft?md5=5bdead4227eef1a873304cc296bf7df1&pid=1-s2.0-S0095895624000029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On orders of automorphisms of vertex-transitive graphs\",\"authors\":\"Primož Potočnik , Micael Toledo , Gabriel Verret\",\"doi\":\"10.1016/j.jctb.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we investigate orders, longest cycles and the number of cycles of automorphisms of finite vertex-transitive graphs. In particular, we show that the order of every automorphism of a connected vertex-transitive graph with <em>n</em> vertices and of valence <em>d</em>, <span><math><mi>d</mi><mo>≤</mo><mn>4</mn></math></span>, is at most <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mi>n</mi></math></span> where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>9</mn></math></span>. Whether such a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> exists for valencies larger than 4 remains an unanswered question. Further, we prove that every automorphism <em>g</em> of a finite connected 3-valent vertex-transitive graph Γ, <span><math><mi>Γ</mi><mo>≇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>, has a regular orbit, that is, an orbit of <span><math><mo>〈</mo><mi>g</mi><mo>〉</mo></math></span> of length equal to the order of <em>g</em>. Moreover, we prove that in this case either Γ belongs to a well understood family of exceptional graphs or at least 5/12 of the vertices of Γ belong to a regular orbit of <em>g</em>. Finally, we give an upper bound on the number of orbits of a cyclic group of automorphisms <em>C</em> of a connected 3-valent vertex-transitive graph Γ in terms of the number of vertices of Γ and the length of a longest orbit of <em>C</em>.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"166 \",\"pages\":\"Pages 123-153\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000029/pdfft?md5=5bdead4227eef1a873304cc296bf7df1&pid=1-s2.0-S0095895624000029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000029\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000029","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了有限顶点传递图的阶数、最长循环和自形变的循环数。特别是,我们证明了一个有 n 个顶点、化合价为 d(d≤4)的连通顶点-传递图的每个自动形的阶最多为 cdn(其中 c3=1 和 c4=9)。对于价数大于 4 的图,是否存在这样的常量 cd 仍是一个未解之谜。此外,我们还证明了有限连接的三价顶点传递图 Γ, Γ≇K3,3 的每个自动形 g 都有一个正则轨道,即长度等于 g 的阶数的〈g〉轨道。最后,我们根据 Γ 的顶点数和 C 的最长轨道长度,给出了连通的三价顶点传递图 Γ 的循环群自形化 C 的轨道数上限。
On orders of automorphisms of vertex-transitive graphs
In this paper we investigate orders, longest cycles and the number of cycles of automorphisms of finite vertex-transitive graphs. In particular, we show that the order of every automorphism of a connected vertex-transitive graph with n vertices and of valence d, , is at most where and . Whether such a constant exists for valencies larger than 4 remains an unanswered question. Further, we prove that every automorphism g of a finite connected 3-valent vertex-transitive graph Γ, , has a regular orbit, that is, an orbit of of length equal to the order of g. Moreover, we prove that in this case either Γ belongs to a well understood family of exceptional graphs or at least 5/12 of the vertices of Γ belong to a regular orbit of g. Finally, we give an upper bound on the number of orbits of a cyclic group of automorphisms C of a connected 3-valent vertex-transitive graph Γ in terms of the number of vertices of Γ and the length of a longest orbit of C.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.