帕金森病的生物学分类:SynNeurGe 研究诊断标准

Günter U Höglinger, Charles H Adler, Daniela Berg, Christine Klein, Tiago F Outeiro, Werner Poewe, Ronald Postuma, A Jon Stoessl, Anthony E Lang
{"title":"帕金森病的生物学分类:SynNeurGe 研究诊断标准","authors":"Günter U Höglinger, Charles H Adler, Daniela Berg, Christine Klein, Tiago F Outeiro, Werner Poewe, Ronald Postuma, A Jon Stoessl, Anthony E Lang","doi":"10.1016/s1474-4422(23)00404-0","DOIUrl":null,"url":null,"abstract":"<p><span><span>With the hope that disease-modifying treatments could target the molecular basis of </span>Parkinson's disease<span>, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and </span></span>clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.</p>","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria\",\"authors\":\"Günter U Höglinger, Charles H Adler, Daniela Berg, Christine Klein, Tiago F Outeiro, Werner Poewe, Ronald Postuma, A Jon Stoessl, Anthony E Lang\",\"doi\":\"10.1016/s1474-4422(23)00404-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><span><span>With the hope that disease-modifying treatments could target the molecular basis of </span>Parkinson's disease<span>, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and </span></span>clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.</p>\",\"PeriodicalId\":22676,\"journal\":{\"name\":\"The Lancet Neurology\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Lancet Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/s1474-4422(23)00404-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/s1474-4422(23)00404-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们希望在帕金森病症状出现之前,就能针对帕金森病的分子基础进行治疗,因此我们提出了一种基于生物学的分类方法。我们的分类通过使用一个由三部分组成的系统(SynNeurGe)承认了疾病的复杂性和异质性:组织或脑脊液中是否存在病理α-突触核蛋白(S);神经影像学程序所定义的潜在神经变性证据(N);以及导致或极易导致帕金森病的致病基因变异(G)的记录。这三个部分与临床部分(C)相关联,临床部分由一个高特异性临床特征或多个低特异性临床特征定义。生物分类法的使用将推动基础研究和临床研究的进步,并使该领域更接近于开发改变疾病疗法所需的精准医学。我们强调这些标准最初仅用于研究。我们承认其伦理意义、局限性以及在未来研究中进行前瞻性验证的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria

With the hope that disease-modifying treatments could target the molecular basis of Parkinson's disease, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信