Günter U Höglinger, Charles H Adler, Daniela Berg, Christine Klein, Tiago F Outeiro, Werner Poewe, Ronald Postuma, A Jon Stoessl, Anthony E Lang
{"title":"帕金森病的生物学分类:SynNeurGe 研究诊断标准","authors":"Günter U Höglinger, Charles H Adler, Daniela Berg, Christine Klein, Tiago F Outeiro, Werner Poewe, Ronald Postuma, A Jon Stoessl, Anthony E Lang","doi":"10.1016/s1474-4422(23)00404-0","DOIUrl":null,"url":null,"abstract":"<p><span><span>With the hope that disease-modifying treatments could target the molecular basis of </span>Parkinson's disease<span>, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and </span></span>clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.</p>","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria\",\"authors\":\"Günter U Höglinger, Charles H Adler, Daniela Berg, Christine Klein, Tiago F Outeiro, Werner Poewe, Ronald Postuma, A Jon Stoessl, Anthony E Lang\",\"doi\":\"10.1016/s1474-4422(23)00404-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><span><span>With the hope that disease-modifying treatments could target the molecular basis of </span>Parkinson's disease<span>, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and </span></span>clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.</p>\",\"PeriodicalId\":22676,\"journal\":{\"name\":\"The Lancet Neurology\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Lancet Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/s1474-4422(23)00404-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/s1474-4422(23)00404-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria
With the hope that disease-modifying treatments could target the molecular basis of Parkinson's disease, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.