I V Litvinenko, K M Naumov, V Yu Lobzin, A Yu Emelin, P S Dynin, K A Kolmakova, V O Nikishin
{"title":"[作为阿尔茨海默病风险因素的脑外伤及病因治疗的可能性]。","authors":"I V Litvinenko, K M Naumov, V Yu Lobzin, A Yu Emelin, P S Dynin, K A Kolmakova, V O Nikishin","doi":"10.17116/jnevro202412401145","DOIUrl":null,"url":null,"abstract":"<p><p>The article examines the potential role of brain mechanical damage as a trigger for the development of neurodegenerative changes. Attention is paid to dysfunction of the neurovascular unit, and disruption of the functional and compensatory capabilities of blood flow. The importance of microhemorrhages that occur in the acute period of injury and the formation of first focal and then diffuse neuroinflammation is emphasized. The importance of mitochondrial dysfunction was separately determined as a significant factor in increasing the risk of developing Alzheimer's disease (AD) in patients after traumatic brain injury (TBI). In TBI, there is a decrease in the expression of tight junction (TC) proteins of endothelial cells, such as occludin, claudin, JP, which leads to increased permeability of the blood-brain barrier. TBI, provoking endothelial dysfunction, contributes to the development of metabolic disorders of β-amyloid and tau protein, which in turn leads to worsening vascular damage, resulting in a vicious circle that can ultimately lead to the development of AD and dementia. Age-related changes in cerebral arteries, which impair perivascular transport of interstitial fluid, are currently considered as an important part of the «amyloid cascade», especially against the background of genetically mediated disorders of glial membranes associated with defective aquaporin-4 (encoded by the <i>APOE4</i>). Studies in animal models of TBI have revealed an increase in tau protein immunoreactivity and its phosphorylation, which correlates with the severity of injury. A comprehensive analysis of research results shows that the cascade of reactions triggered by TBI includes all the main elements of the pathogenesis of AD: disorders of energy metabolism, microcirculation and clearance of cerebral metabolic products. This leads to a disruption in the metabolism of amyloid protein and its accumulation in brain tissue with the subsequent development of tauopathy. Cerebrolysin, by modulating the permeability of the blood-brain barrier, blocks the development of neuroinflammation, reduces the accumulation of pathological forms of proteins and may be slow down the progression of neurodegeneration.</p>","PeriodicalId":56370,"journal":{"name":"Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova","volume":"124 1","pages":"45-54"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Traumatic brain injury as risk factor of Alzheimer's disease and possibilities of pathogenetic therapy].\",\"authors\":\"I V Litvinenko, K M Naumov, V Yu Lobzin, A Yu Emelin, P S Dynin, K A Kolmakova, V O Nikishin\",\"doi\":\"10.17116/jnevro202412401145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The article examines the potential role of brain mechanical damage as a trigger for the development of neurodegenerative changes. Attention is paid to dysfunction of the neurovascular unit, and disruption of the functional and compensatory capabilities of blood flow. The importance of microhemorrhages that occur in the acute period of injury and the formation of first focal and then diffuse neuroinflammation is emphasized. The importance of mitochondrial dysfunction was separately determined as a significant factor in increasing the risk of developing Alzheimer's disease (AD) in patients after traumatic brain injury (TBI). In TBI, there is a decrease in the expression of tight junction (TC) proteins of endothelial cells, such as occludin, claudin, JP, which leads to increased permeability of the blood-brain barrier. TBI, provoking endothelial dysfunction, contributes to the development of metabolic disorders of β-amyloid and tau protein, which in turn leads to worsening vascular damage, resulting in a vicious circle that can ultimately lead to the development of AD and dementia. Age-related changes in cerebral arteries, which impair perivascular transport of interstitial fluid, are currently considered as an important part of the «amyloid cascade», especially against the background of genetically mediated disorders of glial membranes associated with defective aquaporin-4 (encoded by the <i>APOE4</i>). Studies in animal models of TBI have revealed an increase in tau protein immunoreactivity and its phosphorylation, which correlates with the severity of injury. A comprehensive analysis of research results shows that the cascade of reactions triggered by TBI includes all the main elements of the pathogenesis of AD: disorders of energy metabolism, microcirculation and clearance of cerebral metabolic products. This leads to a disruption in the metabolism of amyloid protein and its accumulation in brain tissue with the subsequent development of tauopathy. Cerebrolysin, by modulating the permeability of the blood-brain barrier, blocks the development of neuroinflammation, reduces the accumulation of pathological forms of proteins and may be slow down the progression of neurodegeneration.</p>\",\"PeriodicalId\":56370,\"journal\":{\"name\":\"Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova\",\"volume\":\"124 1\",\"pages\":\"45-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17116/jnevro202412401145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/jnevro202412401145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Traumatic brain injury as risk factor of Alzheimer's disease and possibilities of pathogenetic therapy].
The article examines the potential role of brain mechanical damage as a trigger for the development of neurodegenerative changes. Attention is paid to dysfunction of the neurovascular unit, and disruption of the functional and compensatory capabilities of blood flow. The importance of microhemorrhages that occur in the acute period of injury and the formation of first focal and then diffuse neuroinflammation is emphasized. The importance of mitochondrial dysfunction was separately determined as a significant factor in increasing the risk of developing Alzheimer's disease (AD) in patients after traumatic brain injury (TBI). In TBI, there is a decrease in the expression of tight junction (TC) proteins of endothelial cells, such as occludin, claudin, JP, which leads to increased permeability of the blood-brain barrier. TBI, provoking endothelial dysfunction, contributes to the development of metabolic disorders of β-amyloid and tau protein, which in turn leads to worsening vascular damage, resulting in a vicious circle that can ultimately lead to the development of AD and dementia. Age-related changes in cerebral arteries, which impair perivascular transport of interstitial fluid, are currently considered as an important part of the «amyloid cascade», especially against the background of genetically mediated disorders of glial membranes associated with defective aquaporin-4 (encoded by the APOE4). Studies in animal models of TBI have revealed an increase in tau protein immunoreactivity and its phosphorylation, which correlates with the severity of injury. A comprehensive analysis of research results shows that the cascade of reactions triggered by TBI includes all the main elements of the pathogenesis of AD: disorders of energy metabolism, microcirculation and clearance of cerebral metabolic products. This leads to a disruption in the metabolism of amyloid protein and its accumulation in brain tissue with the subsequent development of tauopathy. Cerebrolysin, by modulating the permeability of the blood-brain barrier, blocks the development of neuroinflammation, reduces the accumulation of pathological forms of proteins and may be slow down the progression of neurodegeneration.
期刊介绍:
Одно из старейших медицинских изданий России, основанное в 1901 году. Создание журнала связано с именами выдающихся деятелей отечественной медицины, вошедших в историю мировой психиатрии и неврологии, – С.С. Корсакова и А.Я. Кожевникова.
Широкий диапазон предлагаемых журналом материалов и разнообразие форм их представления привлекают внимание научных работников и врачей, опытных и начинающих медиков, причем не только неврологов и психиатров, но и специалистов смежных областей медицины.