{"title":"制造含有黄体酮自微乳剂的控释聚合物微针,用于透皮给药。","authors":"Phuvamin Suriyaamporn, Porawan Aumklad, Theerasak Rojanarata, Prasopchai Patrojanasophon, Tanasait Ngawhirunpat, Boonnada Pamornpathomkul, Praneet Opanasopit","doi":"10.1080/10837450.2024.2307996","DOIUrl":null,"url":null,"abstract":"<p><p>Progesterone (PG) has been approved for hormone replacement therapy to mitigate the risk of endometrial carcinoma. However, there has been a lack of success in oral PG due to its rapid degradation. Transdermal PG has advantages but lacks efficacy due to its poor solubility (Log <i>p</i> = 3.9). Therefore, this study aimed to evaluate how combining self-microemulsifying drug delivery systems (SMEDDS) and polymeric microneedles (MNs) could improve the transdermal delivery of PG in a controlled-release manner. Among PG-SMEDDS, PG-SME5 was selected for its desirable properties and stability. The two-layer polymeric MNs formulation incorporating PG-SME5 (PG-SMEDDS-tMNs) was formulated from aqueous blends of polymers as a first layer and 20% PCL as a second layer. It successfully penetrated neonatal porcine skin with the dissolution of the first layer observed within 15 min after application. <i>In vitro</i> skin permeation revealed that the percentage of PG which permeated the skin over 82 h using PG-SMEDDS-tMNs was higher than a PG-suspension and PG-SMEDDS. The Higuchi kinetic showed controlled release over 15 days of PG from PG-SMEDDS-tMNs. These studies suggested that incorporating PG-SMEDDS into controlled-release two-layer polymeric MNs could be a promising approach for improving the transdermal delivery of PG.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"98-111"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of controlled-release polymeric microneedles containing progesterone-loaded self-microemulsions for transdermal delivery.\",\"authors\":\"Phuvamin Suriyaamporn, Porawan Aumklad, Theerasak Rojanarata, Prasopchai Patrojanasophon, Tanasait Ngawhirunpat, Boonnada Pamornpathomkul, Praneet Opanasopit\",\"doi\":\"10.1080/10837450.2024.2307996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Progesterone (PG) has been approved for hormone replacement therapy to mitigate the risk of endometrial carcinoma. However, there has been a lack of success in oral PG due to its rapid degradation. Transdermal PG has advantages but lacks efficacy due to its poor solubility (Log <i>p</i> = 3.9). Therefore, this study aimed to evaluate how combining self-microemulsifying drug delivery systems (SMEDDS) and polymeric microneedles (MNs) could improve the transdermal delivery of PG in a controlled-release manner. Among PG-SMEDDS, PG-SME5 was selected for its desirable properties and stability. The two-layer polymeric MNs formulation incorporating PG-SME5 (PG-SMEDDS-tMNs) was formulated from aqueous blends of polymers as a first layer and 20% PCL as a second layer. It successfully penetrated neonatal porcine skin with the dissolution of the first layer observed within 15 min after application. <i>In vitro</i> skin permeation revealed that the percentage of PG which permeated the skin over 82 h using PG-SMEDDS-tMNs was higher than a PG-suspension and PG-SMEDDS. The Higuchi kinetic showed controlled release over 15 days of PG from PG-SMEDDS-tMNs. These studies suggested that incorporating PG-SMEDDS into controlled-release two-layer polymeric MNs could be a promising approach for improving the transdermal delivery of PG.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"98-111\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2307996\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2307996","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Fabrication of controlled-release polymeric microneedles containing progesterone-loaded self-microemulsions for transdermal delivery.
Progesterone (PG) has been approved for hormone replacement therapy to mitigate the risk of endometrial carcinoma. However, there has been a lack of success in oral PG due to its rapid degradation. Transdermal PG has advantages but lacks efficacy due to its poor solubility (Log p = 3.9). Therefore, this study aimed to evaluate how combining self-microemulsifying drug delivery systems (SMEDDS) and polymeric microneedles (MNs) could improve the transdermal delivery of PG in a controlled-release manner. Among PG-SMEDDS, PG-SME5 was selected for its desirable properties and stability. The two-layer polymeric MNs formulation incorporating PG-SME5 (PG-SMEDDS-tMNs) was formulated from aqueous blends of polymers as a first layer and 20% PCL as a second layer. It successfully penetrated neonatal porcine skin with the dissolution of the first layer observed within 15 min after application. In vitro skin permeation revealed that the percentage of PG which permeated the skin over 82 h using PG-SMEDDS-tMNs was higher than a PG-suspension and PG-SMEDDS. The Higuchi kinetic showed controlled release over 15 days of PG from PG-SMEDDS-tMNs. These studies suggested that incorporating PG-SMEDDS into controlled-release two-layer polymeric MNs could be a promising approach for improving the transdermal delivery of PG.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.