Matthew R Lowerison, Nathiya Vaithiyalingam Chandra Sekaran, Zhijie Dong, Xi Chen, Qi You, Daniel A Llano, Pengfei Song
{"title":"超分辨率超声揭示了阿尔茨海默病小鼠模型中的脑血管损伤。","authors":"Matthew R Lowerison, Nathiya Vaithiyalingam Chandra Sekaran, Zhijie Dong, Xi Chen, Qi You, Daniel A Llano, Pengfei Song","doi":"10.1523/JNEUROSCI.1251-23.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence has suggested a link between cerebrovascular disease and the cognitive impairment associated with Alzheimer's disease. However, detailed descriptions of microvascular changes across brain regions and how they relate to other more traditional pathology have been lacking. Additionally, the efforts to elucidate the interplay between cerebral microvascular function and Alzheimer's disease progression are complicated by the necessity of probing deep-brain structures since early-stage Alzheimer's disease typically involves hippocampal pathology. The purpose of this study was to examine changes in microvascular dynamics in a mouse model of Alzheimer's disease using cohorts that were age-matched to wild-type controls. Data from both sexes were included in this study. Super-resolution ultrasound localization microscopy revealed microvascular functional and structural features throughout the whole brain depth to visualize and quantify. We found that functional decreases in hippocampal and entorhinal flow velocity preceded structural derangements in regional vascular density. Co-registered histological sectioning confirmed the regionalized perfusion deficits seen on ultrasound imaging, which were co-localized with amyloid beta plaque deposition. In addition to providing global vascular quantifications of deep brain structures with a high local resolution, this technology also permitted velocity-profile analysis of individual vessels and, in some cases, allowed for decoupling of arterial and venous flow contributions. These data suggest that microvascular pathology is an early and pervasive feature of Alzheimer's disease and may represent a novel therapeutic target for this disease.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Super-Resolution Ultrasound Reveals Cerebrovascular Impairment in a Mouse Model of Alzheimer's Disease.\",\"authors\":\"Matthew R Lowerison, Nathiya Vaithiyalingam Chandra Sekaran, Zhijie Dong, Xi Chen, Qi You, Daniel A Llano, Pengfei Song\",\"doi\":\"10.1523/JNEUROSCI.1251-23.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence has suggested a link between cerebrovascular disease and the cognitive impairment associated with Alzheimer's disease. However, detailed descriptions of microvascular changes across brain regions and how they relate to other more traditional pathology have been lacking. Additionally, the efforts to elucidate the interplay between cerebral microvascular function and Alzheimer's disease progression are complicated by the necessity of probing deep-brain structures since early-stage Alzheimer's disease typically involves hippocampal pathology. The purpose of this study was to examine changes in microvascular dynamics in a mouse model of Alzheimer's disease using cohorts that were age-matched to wild-type controls. Data from both sexes were included in this study. Super-resolution ultrasound localization microscopy revealed microvascular functional and structural features throughout the whole brain depth to visualize and quantify. We found that functional decreases in hippocampal and entorhinal flow velocity preceded structural derangements in regional vascular density. Co-registered histological sectioning confirmed the regionalized perfusion deficits seen on ultrasound imaging, which were co-localized with amyloid beta plaque deposition. In addition to providing global vascular quantifications of deep brain structures with a high local resolution, this technology also permitted velocity-profile analysis of individual vessels and, in some cases, allowed for decoupling of arterial and venous flow contributions. These data suggest that microvascular pathology is an early and pervasive feature of Alzheimer's disease and may represent a novel therapeutic target for this disease.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.1251-23.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1251-23.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Super-Resolution Ultrasound Reveals Cerebrovascular Impairment in a Mouse Model of Alzheimer's Disease.
Increasing evidence has suggested a link between cerebrovascular disease and the cognitive impairment associated with Alzheimer's disease. However, detailed descriptions of microvascular changes across brain regions and how they relate to other more traditional pathology have been lacking. Additionally, the efforts to elucidate the interplay between cerebral microvascular function and Alzheimer's disease progression are complicated by the necessity of probing deep-brain structures since early-stage Alzheimer's disease typically involves hippocampal pathology. The purpose of this study was to examine changes in microvascular dynamics in a mouse model of Alzheimer's disease using cohorts that were age-matched to wild-type controls. Data from both sexes were included in this study. Super-resolution ultrasound localization microscopy revealed microvascular functional and structural features throughout the whole brain depth to visualize and quantify. We found that functional decreases in hippocampal and entorhinal flow velocity preceded structural derangements in regional vascular density. Co-registered histological sectioning confirmed the regionalized perfusion deficits seen on ultrasound imaging, which were co-localized with amyloid beta plaque deposition. In addition to providing global vascular quantifications of deep brain structures with a high local resolution, this technology also permitted velocity-profile analysis of individual vessels and, in some cases, allowed for decoupling of arterial and venous flow contributions. These data suggest that microvascular pathology is an early and pervasive feature of Alzheimer's disease and may represent a novel therapeutic target for this disease.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles