Zexu Peng, Ana Ludke, Jun Wu, Shuhong Li, Faisal J Alibhai, Yichong Zhang, Yunfei Fan, Huifang Song, Sheng He, Jun Xie, Ren-Ke Li
{"title":"子宫免疫细胞可恢复心肌梗塞后男性受体的心脏功能。","authors":"Zexu Peng, Ana Ludke, Jun Wu, Shuhong Li, Faisal J Alibhai, Yichong Zhang, Yunfei Fan, Huifang Song, Sheng He, Jun Xie, Ren-Ke Li","doi":"10.1093/stmcls/sxae008","DOIUrl":null,"url":null,"abstract":"<p><p>It has been documented that the uterus plays a key cardio-protective role in pre-menopausal women, which is supported by uterine cell therapy, to preserve cardiac functioning post-myocardial infarction, being effective among females. However, whether such therapies would also be beneficial among males is still largely unknown. In this study, we aimed to fill in this gap in knowledge by examining the effects of transplanted uterine cells on infarcted male hearts. We identified, based on major histocompatibility complex class I (MHC-I) expression levels, 3 uterine reparative cell populations: MHC-I(neg), MHC-I(mix), and MHC-I(pos). In vitro, MHC-I(neg) cells showed higher levels of pro-angiogenic, pro-survival, and anti-inflammatory factors, compared to MHC-I(mix) and MHC-I(pos). Furthermore, when cocultured with allogeneic mixed leukocytes, MHC-I(neg) had lower cytotoxicity and leukocyte proliferation. In particular, CD8+ cytotoxic T cells significantly decreased, while CD4+CD25+ Tregs and CD4-CD8- double-negative T cells significantly increased when cocultured with MHC-I(neg), compared to MHC-I(mix) and MHC-I(pos) cocultures. In vivo, MHC-I(neg) as well as MHC-I(mix) were found under both syngeneic and allogeneic transplantation in infarcted male hearts, to significantly improve cardiac function and reduce the scar size, via promoting angiogenesis in the infarcted area. All of these findings thus support the view that males could also benefit from the cardio-protective effects observed among females, via cell therapy approaches involving the transplantation of immuno-privileged uterine reparative cells in infarcted hearts.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"430-444"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uterine Immunoprivileged Cells Restore Cardiac Function of Male Recipients After Myocardial Infarction.\",\"authors\":\"Zexu Peng, Ana Ludke, Jun Wu, Shuhong Li, Faisal J Alibhai, Yichong Zhang, Yunfei Fan, Huifang Song, Sheng He, Jun Xie, Ren-Ke Li\",\"doi\":\"10.1093/stmcls/sxae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been documented that the uterus plays a key cardio-protective role in pre-menopausal women, which is supported by uterine cell therapy, to preserve cardiac functioning post-myocardial infarction, being effective among females. However, whether such therapies would also be beneficial among males is still largely unknown. In this study, we aimed to fill in this gap in knowledge by examining the effects of transplanted uterine cells on infarcted male hearts. We identified, based on major histocompatibility complex class I (MHC-I) expression levels, 3 uterine reparative cell populations: MHC-I(neg), MHC-I(mix), and MHC-I(pos). In vitro, MHC-I(neg) cells showed higher levels of pro-angiogenic, pro-survival, and anti-inflammatory factors, compared to MHC-I(mix) and MHC-I(pos). Furthermore, when cocultured with allogeneic mixed leukocytes, MHC-I(neg) had lower cytotoxicity and leukocyte proliferation. In particular, CD8+ cytotoxic T cells significantly decreased, while CD4+CD25+ Tregs and CD4-CD8- double-negative T cells significantly increased when cocultured with MHC-I(neg), compared to MHC-I(mix) and MHC-I(pos) cocultures. In vivo, MHC-I(neg) as well as MHC-I(mix) were found under both syngeneic and allogeneic transplantation in infarcted male hearts, to significantly improve cardiac function and reduce the scar size, via promoting angiogenesis in the infarcted area. All of these findings thus support the view that males could also benefit from the cardio-protective effects observed among females, via cell therapy approaches involving the transplantation of immuno-privileged uterine reparative cells in infarcted hearts.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\" \",\"pages\":\"430-444\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxae008\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
有资料表明,子宫对绝经前妇女的心脏起着关键的保护作用,而子宫细胞疗法对女性心肌梗塞(MI)后心脏功能的保护也证明了这一点。然而,这种疗法是否对男性也有益处在很大程度上仍是未知数。在这项研究中,我们旨在通过研究移植子宫细胞对梗死男性心脏的影响来填补这一知识空白。根据主要组织相容性复合体 I 类(MHC-I)的表达水平,我们确定了 3 种子宫修复细胞群:MHC-I(阴性)、MHC-I(混合)和MHC-I(阳性)。在体外,与 MHC-I(混合)和 MHC-I(阳性)相比,MHC-I(阴性)细胞显示出更高水平的促血管生成因子、促生存因子和抗炎因子。此外,当与异体混合白细胞共同培养时,MHC-I(阴性)细胞毒性和白细胞增殖能力较低。特别是,与 MHC-I(阴性)和 MHC-I(阳性)共培养相比,与 MHC-I(混合)共培养时,CD8+细胞毒性 T 细胞显著减少,而 CD4+CD25+ Tregs 和 CD4-CD8- 双阴性 T 细胞显著增加。在体内,研究发现 MHC-I(阴性)和 MHC-I(混合)通过促进梗死区域的血管生成,在同种异体移植男性梗死心脏的情况下都能明显改善心脏功能并缩小疤痕。因此,所有这些研究结果都支持这样一种观点,即通过在梗塞心脏移植免疫特异性子宫修复细胞的细胞疗法,男性也能受益于在女性中观察到的心脏保护效果。
Uterine Immunoprivileged Cells Restore Cardiac Function of Male Recipients After Myocardial Infarction.
It has been documented that the uterus plays a key cardio-protective role in pre-menopausal women, which is supported by uterine cell therapy, to preserve cardiac functioning post-myocardial infarction, being effective among females. However, whether such therapies would also be beneficial among males is still largely unknown. In this study, we aimed to fill in this gap in knowledge by examining the effects of transplanted uterine cells on infarcted male hearts. We identified, based on major histocompatibility complex class I (MHC-I) expression levels, 3 uterine reparative cell populations: MHC-I(neg), MHC-I(mix), and MHC-I(pos). In vitro, MHC-I(neg) cells showed higher levels of pro-angiogenic, pro-survival, and anti-inflammatory factors, compared to MHC-I(mix) and MHC-I(pos). Furthermore, when cocultured with allogeneic mixed leukocytes, MHC-I(neg) had lower cytotoxicity and leukocyte proliferation. In particular, CD8+ cytotoxic T cells significantly decreased, while CD4+CD25+ Tregs and CD4-CD8- double-negative T cells significantly increased when cocultured with MHC-I(neg), compared to MHC-I(mix) and MHC-I(pos) cocultures. In vivo, MHC-I(neg) as well as MHC-I(mix) were found under both syngeneic and allogeneic transplantation in infarcted male hearts, to significantly improve cardiac function and reduce the scar size, via promoting angiogenesis in the infarcted area. All of these findings thus support the view that males could also benefit from the cardio-protective effects observed among females, via cell therapy approaches involving the transplantation of immuno-privileged uterine reparative cells in infarcted hearts.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.