最大切割和半定秩

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Renee Mirka, David P. Williamson
{"title":"最大切割和半定秩","authors":"Renee Mirka,&nbsp;David P. Williamson","doi":"10.1016/j.orl.2024.107067","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper considers the relationship between semidefinite programs (SDPs), matrix rank, and maximum cuts of graphs. Utilizing complementary slackness conditions for SDPs, we investigate when the rank 1 feasible solution corresponding to a max cut is the unique optimal solution to the Goemans-Williamson max cut SDP by showing the existence of an optimal dual solution with rank </span><span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span><span>. Our results consider connected bipartite graphs and graphs with multiple max cuts. We conclude with a conjecture for general graphs.</span></p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"53 ","pages":"Article 107067"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Max cut and semidefinite rank\",\"authors\":\"Renee Mirka,&nbsp;David P. Williamson\",\"doi\":\"10.1016/j.orl.2024.107067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper considers the relationship between semidefinite programs (SDPs), matrix rank, and maximum cuts of graphs. Utilizing complementary slackness conditions for SDPs, we investigate when the rank 1 feasible solution corresponding to a max cut is the unique optimal solution to the Goemans-Williamson max cut SDP by showing the existence of an optimal dual solution with rank </span><span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span><span>. Our results consider connected bipartite graphs and graphs with multiple max cuts. We conclude with a conjecture for general graphs.</span></p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"53 \",\"pages\":\"Article 107067\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000038\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000038","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了半定量程序(SDP)、矩阵秩和图形最大切割之间的关系。利用 SDP 的互补松弛条件,我们通过证明存在秩为 n-1 的最优对偶解,研究了与最大切割对应的秩 1 可行解何时是 Goemans-Williamson 最大切割 SDP 的唯一最优解。我们的结果考虑了连通的二叉图和具有多个最大切点的图。最后,我们对一般图提出了一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Max cut and semidefinite rank

This paper considers the relationship between semidefinite programs (SDPs), matrix rank, and maximum cuts of graphs. Utilizing complementary slackness conditions for SDPs, we investigate when the rank 1 feasible solution corresponding to a max cut is the unique optimal solution to the Goemans-Williamson max cut SDP by showing the existence of an optimal dual solution with rank n1. Our results consider connected bipartite graphs and graphs with multiple max cuts. We conclude with a conjecture for general graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信