调整铜嵌碳纳米纤维夹层上氮化钛的结晶度,加速锂硫电池的电化学动力学过程

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-01-22 DOI:10.1002/cey2.450
Yinyu Xiang, Liqiang Lu, Feng Yan, Debarun Sengupta, Petra Rudolf, Ajay Giri Prakash Kottapalli, Yutao Pei
{"title":"调整铜嵌碳纳米纤维夹层上氮化钛的结晶度,加速锂硫电池的电化学动力学过程","authors":"Yinyu Xiang,&nbsp;Liqiang Lu,&nbsp;Feng Yan,&nbsp;Debarun Sengupta,&nbsp;Petra Rudolf,&nbsp;Ajay Giri Prakash Kottapalli,&nbsp;Yutao Pei","doi":"10.1002/cey2.450","DOIUrl":null,"url":null,"abstract":"<p>The development of lithium–sulfur (Li–S) batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge. Herein, the crystallinities of a titanium nitride (TiN) film on copper-embedded carbon nanofibers (Cu-CNFs) are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues. A low-crystalline TiN-coated Cu-CNF (L-TiN-Cu-CNF) interlayer is compared with its highly crystalline counterpart (H-TiN-Cu-CNFs). It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides. Due to robust carbon frameworks and enhanced kinetics, impressive high-rate performance at 2 C (913 mAh g<sup>−1</sup> based on sulfur) as well as remarkable cyclic stability up to 300 cycles (626 mAh g<sup>−1</sup>) with capacity retention of 46.5% is realized for L-TiN-Cu-CNF interlayer-configured Li–S batteries. Even under high loading (3.8 mg cm<sup>−2</sup>) of sulfur and relatively lean electrolyte (10 μL electrolyte per milligram sulfur) conditions, the Li–S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g<sup>−1</sup> with cathodic capacity of 4.25 mAh cm<sup>−2</sup> at 0.1 C, providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li–S batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.450","citationCount":"0","resultStr":"{\"title\":\"Tuning the crystallinity of titanium nitride on copper-embedded carbon nanofiber interlayers for accelerated electrochemical kinetics in lithium–sulfur batteries\",\"authors\":\"Yinyu Xiang,&nbsp;Liqiang Lu,&nbsp;Feng Yan,&nbsp;Debarun Sengupta,&nbsp;Petra Rudolf,&nbsp;Ajay Giri Prakash Kottapalli,&nbsp;Yutao Pei\",\"doi\":\"10.1002/cey2.450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of lithium–sulfur (Li–S) batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge. Herein, the crystallinities of a titanium nitride (TiN) film on copper-embedded carbon nanofibers (Cu-CNFs) are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues. A low-crystalline TiN-coated Cu-CNF (L-TiN-Cu-CNF) interlayer is compared with its highly crystalline counterpart (H-TiN-Cu-CNFs). It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides. Due to robust carbon frameworks and enhanced kinetics, impressive high-rate performance at 2 C (913 mAh g<sup>−1</sup> based on sulfur) as well as remarkable cyclic stability up to 300 cycles (626 mAh g<sup>−1</sup>) with capacity retention of 46.5% is realized for L-TiN-Cu-CNF interlayer-configured Li–S batteries. Even under high loading (3.8 mg cm<sup>−2</sup>) of sulfur and relatively lean electrolyte (10 μL electrolyte per milligram sulfur) conditions, the Li–S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g<sup>−1</sup> with cathodic capacity of 4.25 mAh cm<sup>−2</sup> at 0.1 C, providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li–S batteries.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.450\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.450\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.450","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(Li-S)电池在放电和充电过程中存在多硫化物穿梭以及硫种转化氧化还原动力学缓慢等缺点,阻碍了其发展。在此,我们调节了铜包碳纳米纤维(Cu-CNFs)上氮化钛(TiN)薄膜的结晶度,并将纳米纤维用作夹层,以解决上述关键问题。低结晶 TiN 涂层 Cu-CNF 夹层(L-TiN-Cu-CNF)与其高结晶对应层(H-TiN-Cu-CNFs)进行了比较。结果表明,L-TiN 涂层不仅增强了对多硫化物的化学吸附,还大大加快了多硫化物的电化学转化。L-TiN-Cu-CNF 层间配置的锂-S 电池具有强大的碳框架和增强的动力学性能,在 2 C 条件下具有令人印象深刻的高倍率性能(基于硫的 913 mAh g-1),并且具有高达 300 次循环的显著循环稳定性(626 mAh g-1),容量保持率高达 46.5%。即使在高硫负荷(3.8 mg cm-2)和相对贫电解质(每毫克硫含 10 μL 电解质)条件下,配备 L-TiN-Cu-CNF 夹层的锂-S 电池在 0.1 C 时也能提供 1144 mAh g-1 的高容量,阴极容量为 4.25 mAh cm-2,为设计用于高效锂-S 电池的多功能夹层提供了一条潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning the crystallinity of titanium nitride on copper-embedded carbon nanofiber interlayers for accelerated electrochemical kinetics in lithium–sulfur batteries

Tuning the crystallinity of titanium nitride on copper-embedded carbon nanofiber interlayers for accelerated electrochemical kinetics in lithium–sulfur batteries

Tuning the crystallinity of titanium nitride on copper-embedded carbon nanofiber interlayers for accelerated electrochemical kinetics in lithium–sulfur batteries

The development of lithium–sulfur (Li–S) batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge. Herein, the crystallinities of a titanium nitride (TiN) film on copper-embedded carbon nanofibers (Cu-CNFs) are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues. A low-crystalline TiN-coated Cu-CNF (L-TiN-Cu-CNF) interlayer is compared with its highly crystalline counterpart (H-TiN-Cu-CNFs). It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides. Due to robust carbon frameworks and enhanced kinetics, impressive high-rate performance at 2 C (913 mAh g−1 based on sulfur) as well as remarkable cyclic stability up to 300 cycles (626 mAh g−1) with capacity retention of 46.5% is realized for L-TiN-Cu-CNF interlayer-configured Li–S batteries. Even under high loading (3.8 mg cm−2) of sulfur and relatively lean electrolyte (10 μL electrolyte per milligram sulfur) conditions, the Li–S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g−1 with cathodic capacity of 4.25 mAh cm−2 at 0.1 C, providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li–S batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信