Katelyn O'Dell, Shobha Kondragunta, Hai Zhang, Daniel L. Goldberg, Gaige Hunter Kerr, Zigang Wei, Barron H. Henderson, Susan C. Anenberg
{"title":"利用地球静止卫星数据更好地识别严重空气污染事件对公众健康的益处","authors":"Katelyn O'Dell, Shobha Kondragunta, Hai Zhang, Daniel L. Goldberg, Gaige Hunter Kerr, Zigang Wei, Barron H. Henderson, Susan C. Anenberg","doi":"10.1029/2023GH000890","DOIUrl":null,"url":null,"abstract":"<p>Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite-based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM<sub>2.5</sub> > 35 μg m<sup>−3</sup>) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. We apply pre-existing estimates of PM<sub>2.5</sub> exposure reduction by individual behavior modification and find these additional person-alerts may lead to 1,200 (800–1,500) or 54% more averted PM<sub>2.5</sub>-attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000890","citationCount":"0","resultStr":"{\"title\":\"Public Health Benefits From Improved Identification of Severe Air Pollution Events With Geostationary Satellite Data\",\"authors\":\"Katelyn O'Dell, Shobha Kondragunta, Hai Zhang, Daniel L. Goldberg, Gaige Hunter Kerr, Zigang Wei, Barron H. Henderson, Susan C. Anenberg\",\"doi\":\"10.1029/2023GH000890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite-based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM<sub>2.5</sub> > 35 μg m<sup>−3</sup>) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. We apply pre-existing estimates of PM<sub>2.5</sub> exposure reduction by individual behavior modification and find these additional person-alerts may lead to 1,200 (800–1,500) or 54% more averted PM<sub>2.5</sub>-attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000890\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000890\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000890","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Public Health Benefits From Improved Identification of Severe Air Pollution Events With Geostationary Satellite Data
Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite-based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM2.5 > 35 μg m−3) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. We apply pre-existing estimates of PM2.5 exposure reduction by individual behavior modification and find these additional person-alerts may lead to 1,200 (800–1,500) or 54% more averted PM2.5-attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.