Camille LaFosse Stagg, Leigh Anne Sharp, Emily Fromenthal, Brady Couvillion, Victoria Woltz, Sarai Piazza
{"title":"海拔上升加快表明密西西比河三角洲平原潮汐湿地的土地流失与侵蚀有关","authors":"Camille LaFosse Stagg, Leigh Anne Sharp, Emily Fromenthal, Brady Couvillion, Victoria Woltz, Sarai Piazza","doi":"10.1007/s12237-023-01321-8","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the Mississippi River Deltaic Plain (MRDP) has experienced the highest rates of wetland loss in the USA. Although the process of vertical drowning has been heavily studied in coastal wetlands, less is known about the relationship between elevation change and land loss in wetlands that are experiencing lateral erosion and the contribution of erosion to land loss in the MRDP. We quantified relationships of elevation change and land change in ten submerging tidal wetlands and found that, despite significant land loss, elevation trajectories in seven of the land loss study sites were positive. Furthermore, we observed an acceleration in elevation gain preceding the conversion from vegetated marsh to open water.</p><p>To identify regional contributions of lateral erosion to land loss, we quantified the relationship of elevation change and land change in 159 tidal marsh sites in the MRDP. Approximately half the sites were persistently losing land, and 82% of these sites were vulnerable to erosion, identifying erosion as a dominant mechanism of coastal wetland loss in this region. Notably, the sites that were vulnerable to erosion were experiencing land loss while also gaining elevation, and sites with the highest land loss exhibited accelerating elevation gain. Together, these data illustrate that (1) erosion is a dominant mechanism of wetland loss in the MRDP, (2) accelerated elevation gain is an indicator of erosion, and (3) consideration of elevation change trajectories within the context of land change is critical for providing accurate coastal wetland vulnerability assessments.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Elevation Gain Indicates Land Loss Associated with Erosion in Mississippi River Deltaic Plain Tidal Wetlands\",\"authors\":\"Camille LaFosse Stagg, Leigh Anne Sharp, Emily Fromenthal, Brady Couvillion, Victoria Woltz, Sarai Piazza\",\"doi\":\"10.1007/s12237-023-01321-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the Mississippi River Deltaic Plain (MRDP) has experienced the highest rates of wetland loss in the USA. Although the process of vertical drowning has been heavily studied in coastal wetlands, less is known about the relationship between elevation change and land loss in wetlands that are experiencing lateral erosion and the contribution of erosion to land loss in the MRDP. We quantified relationships of elevation change and land change in ten submerging tidal wetlands and found that, despite significant land loss, elevation trajectories in seven of the land loss study sites were positive. Furthermore, we observed an acceleration in elevation gain preceding the conversion from vegetated marsh to open water.</p><p>To identify regional contributions of lateral erosion to land loss, we quantified the relationship of elevation change and land change in 159 tidal marsh sites in the MRDP. Approximately half the sites were persistently losing land, and 82% of these sites were vulnerable to erosion, identifying erosion as a dominant mechanism of coastal wetland loss in this region. Notably, the sites that were vulnerable to erosion were experiencing land loss while also gaining elevation, and sites with the highest land loss exhibited accelerating elevation gain. Together, these data illustrate that (1) erosion is a dominant mechanism of wetland loss in the MRDP, (2) accelerated elevation gain is an indicator of erosion, and (3) consideration of elevation change trajectories within the context of land change is critical for providing accurate coastal wetland vulnerability assessments.</p>\",\"PeriodicalId\":11921,\"journal\":{\"name\":\"Estuaries and Coasts\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuaries and Coasts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-023-01321-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-023-01321-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Accelerating Elevation Gain Indicates Land Loss Associated with Erosion in Mississippi River Deltaic Plain Tidal Wetlands
In recent years, the Mississippi River Deltaic Plain (MRDP) has experienced the highest rates of wetland loss in the USA. Although the process of vertical drowning has been heavily studied in coastal wetlands, less is known about the relationship between elevation change and land loss in wetlands that are experiencing lateral erosion and the contribution of erosion to land loss in the MRDP. We quantified relationships of elevation change and land change in ten submerging tidal wetlands and found that, despite significant land loss, elevation trajectories in seven of the land loss study sites were positive. Furthermore, we observed an acceleration in elevation gain preceding the conversion from vegetated marsh to open water.
To identify regional contributions of lateral erosion to land loss, we quantified the relationship of elevation change and land change in 159 tidal marsh sites in the MRDP. Approximately half the sites were persistently losing land, and 82% of these sites were vulnerable to erosion, identifying erosion as a dominant mechanism of coastal wetland loss in this region. Notably, the sites that were vulnerable to erosion were experiencing land loss while also gaining elevation, and sites with the highest land loss exhibited accelerating elevation gain. Together, these data illustrate that (1) erosion is a dominant mechanism of wetland loss in the MRDP, (2) accelerated elevation gain is an indicator of erosion, and (3) consideration of elevation change trajectories within the context of land change is critical for providing accurate coastal wetland vulnerability assessments.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.