稳健的交互检测器:道路寿命分析案例

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Zehua Zhang , Yongze Song , Lalinda Karunaratne , Peng Wu
{"title":"稳健的交互检测器:道路寿命分析案例","authors":"Zehua Zhang ,&nbsp;Yongze Song ,&nbsp;Lalinda Karunaratne ,&nbsp;Peng Wu","doi":"10.1016/j.spasta.2024.100814","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial stratified heterogeneity, revealing the disparity mechanisms across spatial strata, can be effectively quantified using the geographical detector (GD). GD requires reasonable spatial discretization strategies to investigate the spatial association between the target variable and numerical independent variables. In previous studies, the Robust Geographical Detector (RGD) optimized spatial strata for examining the power of determinants (PD) of individual variables, which demonstrate more robust spatial discretization than other models. However, the GD's interaction detector that explores PD of the interaction of two variables still needs to be enhanced by the robust spatial discretization. This study develops a Robust Interaction Detector (RID), an improved interaction detector, using change detection algorithms for the robust spatial stratified heterogeneity analysis with multiple explanatory variables. RID is applied in a road life expectancy analysis in Western Australia. Results show that RID presents higher PD values than previous GD models, ensuring the growth of PD value with more spatial strata. The RID model indicates that the interactions between various transport variables and elevation are strongly associated with road life expectancy from the perspective of spatial patterns. The developed RID model provides significant potential for enhanced geospatial factor analysis across diverse fields.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675324000058/pdfft?md5=f61d206ff82268fb072a2711dc2fed1e&pid=1-s2.0-S2211675324000058-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust interaction detector: A case of road life expectancy analysis\",\"authors\":\"Zehua Zhang ,&nbsp;Yongze Song ,&nbsp;Lalinda Karunaratne ,&nbsp;Peng Wu\",\"doi\":\"10.1016/j.spasta.2024.100814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial stratified heterogeneity, revealing the disparity mechanisms across spatial strata, can be effectively quantified using the geographical detector (GD). GD requires reasonable spatial discretization strategies to investigate the spatial association between the target variable and numerical independent variables. In previous studies, the Robust Geographical Detector (RGD) optimized spatial strata for examining the power of determinants (PD) of individual variables, which demonstrate more robust spatial discretization than other models. However, the GD's interaction detector that explores PD of the interaction of two variables still needs to be enhanced by the robust spatial discretization. This study develops a Robust Interaction Detector (RID), an improved interaction detector, using change detection algorithms for the robust spatial stratified heterogeneity analysis with multiple explanatory variables. RID is applied in a road life expectancy analysis in Western Australia. Results show that RID presents higher PD values than previous GD models, ensuring the growth of PD value with more spatial strata. The RID model indicates that the interactions between various transport variables and elevation are strongly associated with road life expectancy from the perspective of spatial patterns. The developed RID model provides significant potential for enhanced geospatial factor analysis across diverse fields.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000058/pdfft?md5=f61d206ff82268fb072a2711dc2fed1e&pid=1-s2.0-S2211675324000058-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000058\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用地理探测器(GD)可以有效地量化空间分层异质性,揭示空间分层的差异机制。GD 需要合理的空间离散化策略来研究目标变量与数字自变量之间的空间关联。在以往的研究中,稳健地理检测器(RGD)优化了空间分层,用于研究单个变量的决定因素(PD)的力量,这比其他模型表现出更稳健的空间离散化。然而,GD 的交互检测器在探索两个变量交互作用的 PD 时,仍需要通过稳健的空间离散化来加强。本研究利用变化检测算法开发了一种改进的交互作用检测器--鲁棒交互作用检测器(RID),用于具有多个解释变量的鲁棒空间分层异质性分析。RID 被应用于西澳大利亚州的道路预期寿命分析。结果表明,与之前的 GD 模型相比,RID 可提供更高的 PD 值,确保 PD 值随着空间分层的增加而增长。RID 模型表明,从空间模式的角度来看,各种交通变量与海拔之间的相互作用与道路预期寿命密切相关。所开发的 RID 模型为加强不同领域的地理空间因素分析提供了巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust interaction detector: A case of road life expectancy analysis

Spatial stratified heterogeneity, revealing the disparity mechanisms across spatial strata, can be effectively quantified using the geographical detector (GD). GD requires reasonable spatial discretization strategies to investigate the spatial association between the target variable and numerical independent variables. In previous studies, the Robust Geographical Detector (RGD) optimized spatial strata for examining the power of determinants (PD) of individual variables, which demonstrate more robust spatial discretization than other models. However, the GD's interaction detector that explores PD of the interaction of two variables still needs to be enhanced by the robust spatial discretization. This study develops a Robust Interaction Detector (RID), an improved interaction detector, using change detection algorithms for the robust spatial stratified heterogeneity analysis with multiple explanatory variables. RID is applied in a road life expectancy analysis in Western Australia. Results show that RID presents higher PD values than previous GD models, ensuring the growth of PD value with more spatial strata. The RID model indicates that the interactions between various transport variables and elevation are strongly associated with road life expectancy from the perspective of spatial patterns. The developed RID model provides significant potential for enhanced geospatial factor analysis across diverse fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信