{"title":"通过光谱评估幽门螺杆菌和爱泼斯坦-巴氏病毒共同感染的胃上皮细胞的生物分子变化","authors":"Dharmendra Kashyap, Manushree Tanwar, Chanchal Rani, Pranit Hemant Bagde, Siddharth Singh, Nidhi Varshney, Vaishali Saini, Amit Mishra, Rajesh Kumar, Hem Chandra Jha","doi":"10.1002/jrs.6652","DOIUrl":null,"url":null,"abstract":"<p><i>Helicobacter pylori</i> and Epstein–Barr Virus (EBV) are Group 1 carcinogens that can enhance gastric cancer progression. Bioactive substances extracted from plants can be effective therapeutic agents in cancer treatment. For example, <i>Withania somnifera</i> extract-WSE reduces the Gankyrin oncoprotein, which is upregulated in the presence of <i>H. pylori</i> and EBV. The various biochemical and metabolic changes upon 24 hrs post-infection followed by <i>W. somnifera</i> extract (WSE) treatment on gastric epithelial cells (AGS) can be studied using spectroscopic techniques. In the biomedical sciences, Raman and NMR spectroscopy have been extensively employed to interpret cellular alterations contributing to the onset of infection and the severity of gastric cancer. More specifically, alterations in cellular biochemical homeostasis are linked to the moieties of cholesterol, collagen, choline, carbohydrate, lipids, tyrosine, and phenylalanine. Further, we have found significantly elevated FWHM for carbohydrates, tumor associated protein, collagen, cholesterol, and cholesterol ester in the co-infection model. We also looked into the potential correlation between these molecules using molecular network analysis and found several related factors that can be modulated through biomolecular levels. These molecules are crucial in several physiological functions, including cell division, cell proliferation, apoptosis, necrosis, cell migration, and lipid transport. Our study paves the pathway to study <i>H. pylori</i> and EBV co-infection in human gastric epithelial cells and the therapeutic interventions of WSE in this scenario and highlights specific biomolecular alterations, which can be focused for further mechanistic investigations.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 5","pages":"549-565"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic assessment of biomolecular changes in Helicobacter pylori and Epstein–Barr virus co-infected gastric epithelial cells\",\"authors\":\"Dharmendra Kashyap, Manushree Tanwar, Chanchal Rani, Pranit Hemant Bagde, Siddharth Singh, Nidhi Varshney, Vaishali Saini, Amit Mishra, Rajesh Kumar, Hem Chandra Jha\",\"doi\":\"10.1002/jrs.6652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Helicobacter pylori</i> and Epstein–Barr Virus (EBV) are Group 1 carcinogens that can enhance gastric cancer progression. Bioactive substances extracted from plants can be effective therapeutic agents in cancer treatment. For example, <i>Withania somnifera</i> extract-WSE reduces the Gankyrin oncoprotein, which is upregulated in the presence of <i>H. pylori</i> and EBV. The various biochemical and metabolic changes upon 24 hrs post-infection followed by <i>W. somnifera</i> extract (WSE) treatment on gastric epithelial cells (AGS) can be studied using spectroscopic techniques. In the biomedical sciences, Raman and NMR spectroscopy have been extensively employed to interpret cellular alterations contributing to the onset of infection and the severity of gastric cancer. More specifically, alterations in cellular biochemical homeostasis are linked to the moieties of cholesterol, collagen, choline, carbohydrate, lipids, tyrosine, and phenylalanine. Further, we have found significantly elevated FWHM for carbohydrates, tumor associated protein, collagen, cholesterol, and cholesterol ester in the co-infection model. We also looked into the potential correlation between these molecules using molecular network analysis and found several related factors that can be modulated through biomolecular levels. These molecules are crucial in several physiological functions, including cell division, cell proliferation, apoptosis, necrosis, cell migration, and lipid transport. Our study paves the pathway to study <i>H. pylori</i> and EBV co-infection in human gastric epithelial cells and the therapeutic interventions of WSE in this scenario and highlights specific biomolecular alterations, which can be focused for further mechanistic investigations.</p>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":\"55 5\",\"pages\":\"549-565\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6652\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6652","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Spectroscopic assessment of biomolecular changes in Helicobacter pylori and Epstein–Barr virus co-infected gastric epithelial cells
Helicobacter pylori and Epstein–Barr Virus (EBV) are Group 1 carcinogens that can enhance gastric cancer progression. Bioactive substances extracted from plants can be effective therapeutic agents in cancer treatment. For example, Withania somnifera extract-WSE reduces the Gankyrin oncoprotein, which is upregulated in the presence of H. pylori and EBV. The various biochemical and metabolic changes upon 24 hrs post-infection followed by W. somnifera extract (WSE) treatment on gastric epithelial cells (AGS) can be studied using spectroscopic techniques. In the biomedical sciences, Raman and NMR spectroscopy have been extensively employed to interpret cellular alterations contributing to the onset of infection and the severity of gastric cancer. More specifically, alterations in cellular biochemical homeostasis are linked to the moieties of cholesterol, collagen, choline, carbohydrate, lipids, tyrosine, and phenylalanine. Further, we have found significantly elevated FWHM for carbohydrates, tumor associated protein, collagen, cholesterol, and cholesterol ester in the co-infection model. We also looked into the potential correlation between these molecules using molecular network analysis and found several related factors that can be modulated through biomolecular levels. These molecules are crucial in several physiological functions, including cell division, cell proliferation, apoptosis, necrosis, cell migration, and lipid transport. Our study paves the pathway to study H. pylori and EBV co-infection in human gastric epithelial cells and the therapeutic interventions of WSE in this scenario and highlights specific biomolecular alterations, which can be focused for further mechanistic investigations.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.