{"title":"探索牛磺酸对尿酸氧化酶生化特性的影响:响应面方法和分子动力学模拟","authors":"Parisa Shahmoradipour, Maryam Zaboli, Masoud Torkzadeh-Mahani","doi":"10.1186/s13036-023-00397-x","DOIUrl":null,"url":null,"abstract":"This paper investigates the impact of taurine as an additive on the structural and functional stability of urate oxidase. First, the effect of the processing parameters for the stabilization of Urate Oxidase (UOX) using taurine was examined using the response surface methodology (RSM) and the central composite design (CCD) model. Also, the study examines thermodynamic and kinetic parameters as well as structural changes of urate oxidase with and without taurine. Fluorescence intensity changes indicated static quenching during taurine binding. The obtained result indicates that taurine has the ability to preserve the native structural conformation of UOX. Furthermore, molecular dynamics simulation is conducted in order to get insights into the alterations in the structure of urate oxidase in the absence and presence of taurine under optimal conditions. The molecular dynamics simulation section investigated the formation of hydrogen bonds (H-bonds) between different components as well as analysis of root mean square deviation (RMSD), root mean square fluctuations (RMSF) and secondary structure. Lower Cα-RMSD and RMSF values indicate greater stabilization of the taurine-treated UOX structure compared to the free enzyme. The results of molecular docking indicate that the binding of taurine to the UOX enzyme through hydrophobic interactions is associated with a negative value for the Gibbs free energy.","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"16 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the impact of taurine on the biochemical properties of urate oxidase: response surface methodology and molecular dynamics simulation\",\"authors\":\"Parisa Shahmoradipour, Maryam Zaboli, Masoud Torkzadeh-Mahani\",\"doi\":\"10.1186/s13036-023-00397-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the impact of taurine as an additive on the structural and functional stability of urate oxidase. First, the effect of the processing parameters for the stabilization of Urate Oxidase (UOX) using taurine was examined using the response surface methodology (RSM) and the central composite design (CCD) model. Also, the study examines thermodynamic and kinetic parameters as well as structural changes of urate oxidase with and without taurine. Fluorescence intensity changes indicated static quenching during taurine binding. The obtained result indicates that taurine has the ability to preserve the native structural conformation of UOX. Furthermore, molecular dynamics simulation is conducted in order to get insights into the alterations in the structure of urate oxidase in the absence and presence of taurine under optimal conditions. The molecular dynamics simulation section investigated the formation of hydrogen bonds (H-bonds) between different components as well as analysis of root mean square deviation (RMSD), root mean square fluctuations (RMSF) and secondary structure. Lower Cα-RMSD and RMSF values indicate greater stabilization of the taurine-treated UOX structure compared to the free enzyme. The results of molecular docking indicate that the binding of taurine to the UOX enzyme through hydrophobic interactions is associated with a negative value for the Gibbs free energy.\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-023-00397-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-023-00397-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring the impact of taurine on the biochemical properties of urate oxidase: response surface methodology and molecular dynamics simulation
This paper investigates the impact of taurine as an additive on the structural and functional stability of urate oxidase. First, the effect of the processing parameters for the stabilization of Urate Oxidase (UOX) using taurine was examined using the response surface methodology (RSM) and the central composite design (CCD) model. Also, the study examines thermodynamic and kinetic parameters as well as structural changes of urate oxidase with and without taurine. Fluorescence intensity changes indicated static quenching during taurine binding. The obtained result indicates that taurine has the ability to preserve the native structural conformation of UOX. Furthermore, molecular dynamics simulation is conducted in order to get insights into the alterations in the structure of urate oxidase in the absence and presence of taurine under optimal conditions. The molecular dynamics simulation section investigated the formation of hydrogen bonds (H-bonds) between different components as well as analysis of root mean square deviation (RMSD), root mean square fluctuations (RMSF) and secondary structure. Lower Cα-RMSD and RMSF values indicate greater stabilization of the taurine-treated UOX structure compared to the free enzyme. The results of molecular docking indicate that the binding of taurine to the UOX enzyme through hydrophobic interactions is associated with a negative value for the Gibbs free energy.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.