Hannah E. Bergom, Laura A. Sena, Abderrahman Day, Benjamin Miller, Carly D. Miller, John R. Lozada, Nicholas Zorko, Jinhua Wang, Eugene Shenderov, Francisco Pereira Lobo, Fernanda Caramella-Pereira, Luigi Marchionni, Charles G. Drake, Tamara Lotan, Angelo M. De Marzo, Justin Hwang, Emmanuel S. Antonarakis
{"title":"错配修复缺陷型前列腺癌患者两个肿瘤结节中不同的免疫微环境","authors":"Hannah E. Bergom, Laura A. Sena, Abderrahman Day, Benjamin Miller, Carly D. Miller, John R. Lozada, Nicholas Zorko, Jinhua Wang, Eugene Shenderov, Francisco Pereira Lobo, Fernanda Caramella-Pereira, Luigi Marchionni, Charles G. Drake, Tamara Lotan, Angelo M. De Marzo, Justin Hwang, Emmanuel S. Antonarakis","doi":"10.1038/s41525-024-00392-1","DOIUrl":null,"url":null,"abstract":"<p>Patients with prostate cancer (PC) generally do not respond favorably to immune checkpoint inhibitors, which may be due to a low abundance of tumor-infiltrating lymphocytes even when mutational load is high. Here, we identified a patient who presented with high-grade primary prostate cancer with two adjacent tumor nodules. While both nodules were mismatch repair-deficient (MMRd), exhibited pathogenic <i>MSH2</i> and <i>MSH6</i> alterations, had a high tumor mutational burden (TMB), and demonstrated high microsatellite instability (MSI), they had markedly distinct immune phenotypes. The first displayed a dense infiltrate of lymphocytes (“hot nodule”), while the second displayed significantly fewer infiltrating lymphocytes (“cold nodule”). Whole-exome DNA analysis found that both nodules shared many identical mutations, indicating that they were derived from a single clone. However, the cold nodule appeared to be sub-clonal relative to the hot nodule, suggesting divergent evolution of the cold nodule from the hot nodule. Whole-transcriptome RNA analysis found that the cold nodule demonstrated lower expression of genes related to antigen presentation (HLA) and, paradoxically, classical tumor immune tolerance markers such as PD-L1 (<i>CD274</i>) and CTLA-4. Immune cell deconvolution suggested that the hot nodule was enriched not only in CD8+ and CD4 + T lymphocytes, but also in M1 macrophages, activated NK cells, and γδ T cells compared to the cold nodule. This case highlights that MMRd/TMB-high PC can evolve to minimize an anti-tumor immune response, and nominates downregulation of antigen presentation machinery (HLA loss) as a potential mechanism of adaptive immune evasion in PC.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"11 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent immune microenvironments in two tumor nodules from a patient with mismatch repair-deficient prostate cancer\",\"authors\":\"Hannah E. Bergom, Laura A. Sena, Abderrahman Day, Benjamin Miller, Carly D. Miller, John R. Lozada, Nicholas Zorko, Jinhua Wang, Eugene Shenderov, Francisco Pereira Lobo, Fernanda Caramella-Pereira, Luigi Marchionni, Charles G. Drake, Tamara Lotan, Angelo M. De Marzo, Justin Hwang, Emmanuel S. Antonarakis\",\"doi\":\"10.1038/s41525-024-00392-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Patients with prostate cancer (PC) generally do not respond favorably to immune checkpoint inhibitors, which may be due to a low abundance of tumor-infiltrating lymphocytes even when mutational load is high. Here, we identified a patient who presented with high-grade primary prostate cancer with two adjacent tumor nodules. While both nodules were mismatch repair-deficient (MMRd), exhibited pathogenic <i>MSH2</i> and <i>MSH6</i> alterations, had a high tumor mutational burden (TMB), and demonstrated high microsatellite instability (MSI), they had markedly distinct immune phenotypes. The first displayed a dense infiltrate of lymphocytes (“hot nodule”), while the second displayed significantly fewer infiltrating lymphocytes (“cold nodule”). Whole-exome DNA analysis found that both nodules shared many identical mutations, indicating that they were derived from a single clone. However, the cold nodule appeared to be sub-clonal relative to the hot nodule, suggesting divergent evolution of the cold nodule from the hot nodule. Whole-transcriptome RNA analysis found that the cold nodule demonstrated lower expression of genes related to antigen presentation (HLA) and, paradoxically, classical tumor immune tolerance markers such as PD-L1 (<i>CD274</i>) and CTLA-4. Immune cell deconvolution suggested that the hot nodule was enriched not only in CD8+ and CD4 + T lymphocytes, but also in M1 macrophages, activated NK cells, and γδ T cells compared to the cold nodule. This case highlights that MMRd/TMB-high PC can evolve to minimize an anti-tumor immune response, and nominates downregulation of antigen presentation machinery (HLA loss) as a potential mechanism of adaptive immune evasion in PC.</p>\",\"PeriodicalId\":19273,\"journal\":{\"name\":\"NPJ Genomic Medicine\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41525-024-00392-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-024-00392-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
前列腺癌(PC)患者通常对免疫检查点抑制剂反应不佳,这可能是由于即使突变负荷很高,肿瘤浸润淋巴细胞的数量也很少。在这里,我们发现了一名患有高级别原发性前列腺癌并伴有两个相邻肿瘤结节的患者。虽然这两个结节都存在错配修复缺陷(MMRd),表现出致病性 MSH2 和 MSH6 改变,具有高肿瘤突变负荷(TMB),并显示出高微卫星不稳定性(MSI),但它们的免疫表型却明显不同。前者显示密集的淋巴细胞浸润("热结节"),而后者显示的浸润淋巴细胞明显较少("冷结节")。全外显子组 DNA 分析发现,两个结节都有许多相同的突变,表明它们都来自一个克隆。然而,相对于热结节,冷结节似乎是亚克隆,这表明冷结节与热结节的进化是不同的。全转录组 RNA 分析发现,冷结节中与抗原递呈(HLA)相关的基因表达较低,而与此相反的是,PD-L1 (CD274) 和 CTLA-4 等经典肿瘤免疫耐受标记物的表达也较低。免疫细胞解旋表明,与冷结节相比,热结节不仅富含 CD8+ 和 CD4 + T 淋巴细胞,还富含 M1 巨噬细胞、活化的 NK 细胞和 γδ T 细胞。该病例突出表明,MMRd/TMB高的PC可演变为抗肿瘤免疫反应最小化,并指出抗原递呈机制的下调(HLA缺失)是PC中适应性免疫逃避的潜在机制。
Divergent immune microenvironments in two tumor nodules from a patient with mismatch repair-deficient prostate cancer
Patients with prostate cancer (PC) generally do not respond favorably to immune checkpoint inhibitors, which may be due to a low abundance of tumor-infiltrating lymphocytes even when mutational load is high. Here, we identified a patient who presented with high-grade primary prostate cancer with two adjacent tumor nodules. While both nodules were mismatch repair-deficient (MMRd), exhibited pathogenic MSH2 and MSH6 alterations, had a high tumor mutational burden (TMB), and demonstrated high microsatellite instability (MSI), they had markedly distinct immune phenotypes. The first displayed a dense infiltrate of lymphocytes (“hot nodule”), while the second displayed significantly fewer infiltrating lymphocytes (“cold nodule”). Whole-exome DNA analysis found that both nodules shared many identical mutations, indicating that they were derived from a single clone. However, the cold nodule appeared to be sub-clonal relative to the hot nodule, suggesting divergent evolution of the cold nodule from the hot nodule. Whole-transcriptome RNA analysis found that the cold nodule demonstrated lower expression of genes related to antigen presentation (HLA) and, paradoxically, classical tumor immune tolerance markers such as PD-L1 (CD274) and CTLA-4. Immune cell deconvolution suggested that the hot nodule was enriched not only in CD8+ and CD4 + T lymphocytes, but also in M1 macrophages, activated NK cells, and γδ T cells compared to the cold nodule. This case highlights that MMRd/TMB-high PC can evolve to minimize an anti-tumor immune response, and nominates downregulation of antigen presentation machinery (HLA loss) as a potential mechanism of adaptive immune evasion in PC.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.