从农场到餐桌的软机器人技术:在农业和养殖业中的应用。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Costanza Armanini, Kai Junge, Philip Johnson, Charles Whitfield, Federico Renda, Marcello Calisti, Josie Hughes
{"title":"从农场到餐桌的软机器人技术:在农业和养殖业中的应用。","authors":"Costanza Armanini, Kai Junge, Philip Johnson, Charles Whitfield, Federico Renda, Marcello Calisti, Josie Hughes","doi":"10.1088/1748-3190/ad2084","DOIUrl":null,"url":null,"abstract":"<p><p>Agricultural tasks and environments range from harsh field conditions with semi-structured produce or animals, through to post-processing tasks in food-processing environments. From farm to fork, the development and application of soft robotics offers a plethora of potential uses. Robust yet compliant interactions between farm produce and machines will enable new capabilities and optimize existing processes. There is also an opportunity to explore how modeling tools used in soft robotics can be applied to improve our representation and understanding of the soft and compliant structures common in agriculture. In this review, we seek to highlight the potential for soft robotics technologies within the food system, and also the unique challenges that must be addressed when developing soft robotics systems for this problem domain. We conclude with an outlook on potential directions for meaningful and sustainable impact, and also how our outlook on both soft robotics and agriculture must evolve in order to achieve the required paradigm shift.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft robotics for farm to fork: applications in agriculture & farming.\",\"authors\":\"Costanza Armanini, Kai Junge, Philip Johnson, Charles Whitfield, Federico Renda, Marcello Calisti, Josie Hughes\",\"doi\":\"10.1088/1748-3190/ad2084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agricultural tasks and environments range from harsh field conditions with semi-structured produce or animals, through to post-processing tasks in food-processing environments. From farm to fork, the development and application of soft robotics offers a plethora of potential uses. Robust yet compliant interactions between farm produce and machines will enable new capabilities and optimize existing processes. There is also an opportunity to explore how modeling tools used in soft robotics can be applied to improve our representation and understanding of the soft and compliant structures common in agriculture. In this review, we seek to highlight the potential for soft robotics technologies within the food system, and also the unique challenges that must be addressed when developing soft robotics systems for this problem domain. We conclude with an outlook on potential directions for meaningful and sustainable impact, and also how our outlook on both soft robotics and agriculture must evolve in order to achieve the required paradigm shift.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad2084\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad2084","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

农业任务和环境的范围很广,从半成品或动物的恶劣田间条件,到食品加工环境中的后处理任务,不一而足。从农场到餐桌,软机器人技术的开发和应用提供了大量潜在用途。农产品与机器之间稳健而合规的互动将实现新的功能并优化现有流程。此外,我们还有机会探索如何将软体机器人技术中使用的建模工具用于改善我们对农业中常见的软体和顺应性结构的表示和理解。在本综述中,我们试图强调软体机器人技术在食品系统中的潜力,以及在为这一问题领域开发软体机器人系统时必须应对的独特挑战。最后,我们展望了产生有意义和可持续影响的潜在方向,以及我们对软机器人技术和农业的看法必须如何发展,才能实现所需的范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft robotics for farm to fork: applications in agriculture & farming.

Agricultural tasks and environments range from harsh field conditions with semi-structured produce or animals, through to post-processing tasks in food-processing environments. From farm to fork, the development and application of soft robotics offers a plethora of potential uses. Robust yet compliant interactions between farm produce and machines will enable new capabilities and optimize existing processes. There is also an opportunity to explore how modeling tools used in soft robotics can be applied to improve our representation and understanding of the soft and compliant structures common in agriculture. In this review, we seek to highlight the potential for soft robotics technologies within the food system, and also the unique challenges that must be addressed when developing soft robotics systems for this problem domain. We conclude with an outlook on potential directions for meaningful and sustainable impact, and also how our outlook on both soft robotics and agriculture must evolve in order to achieve the required paradigm shift.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信