链球菌精氨酸脱氨酶系统通过 XRE 家族蛋白 XtrSs 的介导,抵御巨噬细胞的杀菌作用。

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2024-12-01 Epub Date: 2024-02-02 DOI:10.1080/21505594.2024.2306719
Yumin Zhang, Song Liang, Shidan Zhang, Qiankun Bai, Lei Dai, Jinxiu Wang, Huochun Yao, Wei Zhang, Guangjin Liu
{"title":"链球菌精氨酸脱氨酶系统通过 XRE 家族蛋白 XtrSs 的介导,抵御巨噬细胞的杀菌作用。","authors":"Yumin Zhang, Song Liang, Shidan Zhang, Qiankun Bai, Lei Dai, Jinxiu Wang, Huochun Yao, Wei Zhang, Guangjin Liu","doi":"10.1080/21505594.2024.2306719","DOIUrl":null,"url":null,"abstract":"<p><p>The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected <i>Streptococcus suis</i> virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that <i>S. suis</i> could utilize arginine via ADS to adapt to acid stress, while Δ<i>xtrSs</i> enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout <i>S. suis</i> increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while Δ<i>xtrSs</i> consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in <i>S. suis</i>, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting <i>S. suis</i> intracellular survival. Meanwhile, our findings provide a new perspective on how <i>Streptococci</i> evade the host's innate immune system.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841013/pdf/","citationCount":"0","resultStr":"{\"title\":\"Streptococcal arginine deiminase system defences macrophage bactericidal effect mediated by XRE family protein XtrSs.\",\"authors\":\"Yumin Zhang, Song Liang, Shidan Zhang, Qiankun Bai, Lei Dai, Jinxiu Wang, Huochun Yao, Wei Zhang, Guangjin Liu\",\"doi\":\"10.1080/21505594.2024.2306719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected <i>Streptococcus suis</i> virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that <i>S. suis</i> could utilize arginine via ADS to adapt to acid stress, while Δ<i>xtrSs</i> enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout <i>S. suis</i> increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while Δ<i>xtrSs</i> consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in <i>S. suis</i>, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting <i>S. suis</i> intracellular survival. Meanwhile, our findings provide a new perspective on how <i>Streptococci</i> evade the host's innate immune system.</p>\",\"PeriodicalId\":23747,\"journal\":{\"name\":\"Virulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841013/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virulence\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21505594.2024.2306719\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2024.2306719","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精氨酸脱氨酶系统(ADS)已在多种细菌中被发现,其功能是补充能量生产和提高生物适应性。目前对 ADS 的调控机制及其对细菌致病作用的了解还很有限。在这里,我们发现 XRE 家族转录调控因子 XtrSs 对猪链球菌的毒力有负面影响,并能显著抑制细菌在血液中培养时的 ADS 转录。电泳迁移(EMSA)和 lacZ 融合试验进一步表明,XtrSs 直接与 ArgR(细菌 ADS 的公认正调控因子)启动子结合,抑制 ArgR 的转录。此外,我们还提供了令人信服的证据,证明 S. suis 可以通过 ADS 利用精氨酸来适应酸胁迫,而 ΔxtrSs 则通过上调 ADS 操作子来增强这种抗酸性。此外,在小鼠感染模型中,整个 ADS 基因敲除的 S. suis 增加了受感染巨噬细胞中的精氨酸和抗菌 NO,降低了细胞内存活率,甚至导致细菌毒力显著减弱,而 ΔxtrSs 则始终呈现出相反的结果。我们的实验发现了鼠疫杆菌中一种新的 ADS 调节机制,即 XtrSs 通过调节 ADS 来调节巨噬细胞中的 NO 含量,从而促进鼠疫杆菌的胞内存活。同时,我们的发现为链球菌如何逃避宿主的先天免疫系统提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Streptococcal arginine deiminase system defences macrophage bactericidal effect mediated by XRE family protein XtrSs.

The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信