Laura Pierce, Hidayah Anderson, Swarnavo Sarkar, Steven R Bauer, Sumona Sarkar
{"title":"通过实验和计算方法建立适用的细胞活力测定方法。","authors":"Laura Pierce, Hidayah Anderson, Swarnavo Sarkar, Steven R Bauer, Sumona Sarkar","doi":"10.2217/rme-2023-0154","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Cell viability assays are critical for cell-based products. Here, we demonstrate a combined experimental and computational approach to identify fit-for-purpose cell assays that can predict changes in cell proliferation, a critical biological response in cell expansion. <b>Materials & methods:</b> Jurkat cells were systematically injured using heat (45 ± 1°C). Cell viability was measured at 0 h and 24 h after treatment using assays for membrane integrity, metabolic function and apoptosis. Proliferation kinetics for longer term cultures were modeled using the Gompertz distribution to establish predictive models between cell viability results and proliferation. <b>Results & conclusion:</b> We demonstrate an approach for ranking these assays as predictors of cell proliferation and for setting cell viability specifications when a particular proliferation response is required.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and computational approach to establish fit-for-purpose cell viability assays.\",\"authors\":\"Laura Pierce, Hidayah Anderson, Swarnavo Sarkar, Steven R Bauer, Sumona Sarkar\",\"doi\":\"10.2217/rme-2023-0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Cell viability assays are critical for cell-based products. Here, we demonstrate a combined experimental and computational approach to identify fit-for-purpose cell assays that can predict changes in cell proliferation, a critical biological response in cell expansion. <b>Materials & methods:</b> Jurkat cells were systematically injured using heat (45 ± 1°C). Cell viability was measured at 0 h and 24 h after treatment using assays for membrane integrity, metabolic function and apoptosis. Proliferation kinetics for longer term cultures were modeled using the Gompertz distribution to establish predictive models between cell viability results and proliferation. <b>Results & conclusion:</b> We demonstrate an approach for ranking these assays as predictors of cell proliferation and for setting cell viability specifications when a particular proliferation response is required.</p>\",\"PeriodicalId\":21043,\"journal\":{\"name\":\"Regenerative medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2217/rme-2023-0154\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2217/rme-2023-0154","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Experimental and computational approach to establish fit-for-purpose cell viability assays.
Aim: Cell viability assays are critical for cell-based products. Here, we demonstrate a combined experimental and computational approach to identify fit-for-purpose cell assays that can predict changes in cell proliferation, a critical biological response in cell expansion. Materials & methods: Jurkat cells were systematically injured using heat (45 ± 1°C). Cell viability was measured at 0 h and 24 h after treatment using assays for membrane integrity, metabolic function and apoptosis. Proliferation kinetics for longer term cultures were modeled using the Gompertz distribution to establish predictive models between cell viability results and proliferation. Results & conclusion: We demonstrate an approach for ranking these assays as predictors of cell proliferation and for setting cell viability specifications when a particular proliferation response is required.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.