{"title":"淋巴管在角膜液平衡和伤口愈合中的作用。","authors":"Karina Hadrian, Claus Cursiefen","doi":"10.1186/s12348-023-00381-y","DOIUrl":null,"url":null,"abstract":"<p><p>The cornea, essential for vision, is normally avascular, transparent, and immune-privileged. However, injuries or infections can break this privilege, allowing blood and lymphatic vessels to invade, potentially impairing vision and causing immune responses. This review explores the complex role of corneal lymphangiogenesis in health and diseases. Traditionally, the cornea was considered devoid of lymphatic vessels, a phenomenon known as \"corneal (lymph)angiogenic privilege.\" Recent advances in molecular markers have enabled the discovery of lymphatic vessels in the cornea under certain conditions. Several molecules contribute to preserving both immune and lymphangiogenic privileges. Lymphangiogenesis, primarily driven by VEGF family members, can occur directly or indirectly through macrophage recruitment. Corneal injuries and diseases disrupt these privileges, reducing graft survival rates following transplantation. However, modulation of lymphangiogenesis offers potential interventions to promote graft survival and expedite corneal edema resolution.This review underscores the intricate interplay between lymphatic vessels, immune privilege, and corneal pathologies, highlighting innovative therapeutic possibilities. Future investigations should explore the modulation of lymphangiogenesis to enhance corneal health and transparency, as well as corneal graft survival, and this benefits patients with various corneal conditions.</p>","PeriodicalId":16600,"journal":{"name":"Journal of Ophthalmic Inflammation and Infection","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803698/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of lymphatic vessels in corneal fluid homeostasis and wound healing.\",\"authors\":\"Karina Hadrian, Claus Cursiefen\",\"doi\":\"10.1186/s12348-023-00381-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cornea, essential for vision, is normally avascular, transparent, and immune-privileged. However, injuries or infections can break this privilege, allowing blood and lymphatic vessels to invade, potentially impairing vision and causing immune responses. This review explores the complex role of corneal lymphangiogenesis in health and diseases. Traditionally, the cornea was considered devoid of lymphatic vessels, a phenomenon known as \\\"corneal (lymph)angiogenic privilege.\\\" Recent advances in molecular markers have enabled the discovery of lymphatic vessels in the cornea under certain conditions. Several molecules contribute to preserving both immune and lymphangiogenic privileges. Lymphangiogenesis, primarily driven by VEGF family members, can occur directly or indirectly through macrophage recruitment. Corneal injuries and diseases disrupt these privileges, reducing graft survival rates following transplantation. However, modulation of lymphangiogenesis offers potential interventions to promote graft survival and expedite corneal edema resolution.This review underscores the intricate interplay between lymphatic vessels, immune privilege, and corneal pathologies, highlighting innovative therapeutic possibilities. Future investigations should explore the modulation of lymphangiogenesis to enhance corneal health and transparency, as well as corneal graft survival, and this benefits patients with various corneal conditions.</p>\",\"PeriodicalId\":16600,\"journal\":{\"name\":\"Journal of Ophthalmic Inflammation and Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803698/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ophthalmic Inflammation and Infection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12348-023-00381-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ophthalmic Inflammation and Infection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12348-023-00381-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
The role of lymphatic vessels in corneal fluid homeostasis and wound healing.
The cornea, essential for vision, is normally avascular, transparent, and immune-privileged. However, injuries or infections can break this privilege, allowing blood and lymphatic vessels to invade, potentially impairing vision and causing immune responses. This review explores the complex role of corneal lymphangiogenesis in health and diseases. Traditionally, the cornea was considered devoid of lymphatic vessels, a phenomenon known as "corneal (lymph)angiogenic privilege." Recent advances in molecular markers have enabled the discovery of lymphatic vessels in the cornea under certain conditions. Several molecules contribute to preserving both immune and lymphangiogenic privileges. Lymphangiogenesis, primarily driven by VEGF family members, can occur directly or indirectly through macrophage recruitment. Corneal injuries and diseases disrupt these privileges, reducing graft survival rates following transplantation. However, modulation of lymphangiogenesis offers potential interventions to promote graft survival and expedite corneal edema resolution.This review underscores the intricate interplay between lymphatic vessels, immune privilege, and corneal pathologies, highlighting innovative therapeutic possibilities. Future investigations should explore the modulation of lymphangiogenesis to enhance corneal health and transparency, as well as corneal graft survival, and this benefits patients with various corneal conditions.