{"title":"分离脱木质素细菌并优化用于生物能源的生物质微生物预处理。","authors":"B Rabi Prasad, Suman Polaki, Radha Krushna Padhi","doi":"10.1007/s10529-023-03463-y","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial pretreatment of lignocellulosic biomass holds significant promise for environmentally friendly biofuel production, offering an alternative to fossil fuels. This study focused on the isolation and characterization of two novel delignifying bacteria, GIET1 and GIET2, to enhance cellulose accessibility by lignin degradation. Molecular characterization confirmed their genetic identities, providing valuable microbial resources for biofuel production. Our results revealed distinct preferences for temperature, pH, and incubation period for the two bacteria. Bacillus haynesii exhibited optimal performance under moderate conditions and shorter incubation period, making it suitable for rice straw and sugarcane bagasse pretreatment. In contrast, Paenibacillus alvei thrived at higher temperatures and slightly alkaline pH, requiring a longer incubation period ideal for corn stalk pretreatment. These strain-specific requirements highlight the importance of tailoring pretreatment conditions to specific feedstocks. Structural, chemical, and morphological analyses demonstrated that microbial pretreatment reduced the amorphous lignin, increasing cellulose crystallinity and accessibility. These findings underscore the potential of microbial pretreatment to enhance biofuel production by modifying the lignocellulosic biomass. Such environmentally friendly bioconversion processes offer sustainable and cleaner energy solutions. Further research to optimize these methods for scalability and broader application is necessary in the pursuit for more efficient and greener biofuel production.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"183-199"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation of delignifying bacteria and optimization of microbial pretreatment of biomass for bioenergy.\",\"authors\":\"B Rabi Prasad, Suman Polaki, Radha Krushna Padhi\",\"doi\":\"10.1007/s10529-023-03463-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial pretreatment of lignocellulosic biomass holds significant promise for environmentally friendly biofuel production, offering an alternative to fossil fuels. This study focused on the isolation and characterization of two novel delignifying bacteria, GIET1 and GIET2, to enhance cellulose accessibility by lignin degradation. Molecular characterization confirmed their genetic identities, providing valuable microbial resources for biofuel production. Our results revealed distinct preferences for temperature, pH, and incubation period for the two bacteria. Bacillus haynesii exhibited optimal performance under moderate conditions and shorter incubation period, making it suitable for rice straw and sugarcane bagasse pretreatment. In contrast, Paenibacillus alvei thrived at higher temperatures and slightly alkaline pH, requiring a longer incubation period ideal for corn stalk pretreatment. These strain-specific requirements highlight the importance of tailoring pretreatment conditions to specific feedstocks. Structural, chemical, and morphological analyses demonstrated that microbial pretreatment reduced the amorphous lignin, increasing cellulose crystallinity and accessibility. These findings underscore the potential of microbial pretreatment to enhance biofuel production by modifying the lignocellulosic biomass. Such environmentally friendly bioconversion processes offer sustainable and cleaner energy solutions. Further research to optimize these methods for scalability and broader application is necessary in the pursuit for more efficient and greener biofuel production.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\" \",\"pages\":\"183-199\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-023-03463-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03463-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Isolation of delignifying bacteria and optimization of microbial pretreatment of biomass for bioenergy.
Microbial pretreatment of lignocellulosic biomass holds significant promise for environmentally friendly biofuel production, offering an alternative to fossil fuels. This study focused on the isolation and characterization of two novel delignifying bacteria, GIET1 and GIET2, to enhance cellulose accessibility by lignin degradation. Molecular characterization confirmed their genetic identities, providing valuable microbial resources for biofuel production. Our results revealed distinct preferences for temperature, pH, and incubation period for the two bacteria. Bacillus haynesii exhibited optimal performance under moderate conditions and shorter incubation period, making it suitable for rice straw and sugarcane bagasse pretreatment. In contrast, Paenibacillus alvei thrived at higher temperatures and slightly alkaline pH, requiring a longer incubation period ideal for corn stalk pretreatment. These strain-specific requirements highlight the importance of tailoring pretreatment conditions to specific feedstocks. Structural, chemical, and morphological analyses demonstrated that microbial pretreatment reduced the amorphous lignin, increasing cellulose crystallinity and accessibility. These findings underscore the potential of microbial pretreatment to enhance biofuel production by modifying the lignocellulosic biomass. Such environmentally friendly bioconversion processes offer sustainable and cleaner energy solutions. Further research to optimize these methods for scalability and broader application is necessary in the pursuit for more efficient and greener biofuel production.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.