Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Raphael Viscarra Rossel
{"title":"利用机器学习和基于过程的建模对澳大利亚土壤有机碳进行集合估算","authors":"Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Raphael Viscarra Rossel","doi":"10.5194/egusphere-2023-3016","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Spatially explicit prediction of soil organic carbon (SOC) serves as a crucial foundation for effective land management strategies aimed at mitigating soil degradation and assessing carbon sequestration potential. Here, using more than 1000 in-situ observations, we trained two machine learning models (random forest, and K-means coupled with multiple linear regression), and one process-based model (the vertically resolved MIcrobial-MIneral Carbon Stabilization (MIMICS)) to predict SOC content of the top 30 cm of soil in Australia. Parameters of MIMICS were optimized for different site groupings, using two distinct approaches, plant functional types (MIMICS-PFT), and the most influential environmental factors (MIMICS-ENV). We found that at the continental scale, soil bulk density and mean annual temperature are the dominant controls of SOC variation, and that dominant controls vary for different vegetation types. All models showed good performance in SOC predictions with R<sup>2</sup> greater than 0.8 during out-of-sample validation with random forest being the most accurate, and SOC in forests is more predictable than that in non-forest soils. Parameter optimization approaches made a notable difference in the performance of MIMICS SOC prediction with MIMICS-ENV performing better than MIMICS-PFT especially in non-forest soils. Digital maps of terrestrial SOC stocks generated using all the models showed similar spatial distribution with higher values in southeast and southwest Australia, but the magnitude of estimated SOC stocks varied. The mean ensemble estimate of SOC stocks was 30.08 t/ha with K-means coupled with multiple linear regression generating the highest estimate (mean SOC stocks at 38.15 t/ha) and MIMICS-PFT generating the lowest estimate (mean SOC stocks at 24.29 t/ha). We suggest that enhancing process-based models to incorporate newly identified drivers that significantly influence SOC variations in different environments could be key to reducing the discrepancies in these estimates. Our findings underscore the considerable uncertainty in SOC estimates derived from different modelling approaches and emphasize the importance of rigorous out-of-sample validation before applying any one approach in Australia.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"11 8 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling\",\"authors\":\"Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Raphael Viscarra Rossel\",\"doi\":\"10.5194/egusphere-2023-3016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Spatially explicit prediction of soil organic carbon (SOC) serves as a crucial foundation for effective land management strategies aimed at mitigating soil degradation and assessing carbon sequestration potential. Here, using more than 1000 in-situ observations, we trained two machine learning models (random forest, and K-means coupled with multiple linear regression), and one process-based model (the vertically resolved MIcrobial-MIneral Carbon Stabilization (MIMICS)) to predict SOC content of the top 30 cm of soil in Australia. Parameters of MIMICS were optimized for different site groupings, using two distinct approaches, plant functional types (MIMICS-PFT), and the most influential environmental factors (MIMICS-ENV). We found that at the continental scale, soil bulk density and mean annual temperature are the dominant controls of SOC variation, and that dominant controls vary for different vegetation types. All models showed good performance in SOC predictions with R<sup>2</sup> greater than 0.8 during out-of-sample validation with random forest being the most accurate, and SOC in forests is more predictable than that in non-forest soils. Parameter optimization approaches made a notable difference in the performance of MIMICS SOC prediction with MIMICS-ENV performing better than MIMICS-PFT especially in non-forest soils. Digital maps of terrestrial SOC stocks generated using all the models showed similar spatial distribution with higher values in southeast and southwest Australia, but the magnitude of estimated SOC stocks varied. The mean ensemble estimate of SOC stocks was 30.08 t/ha with K-means coupled with multiple linear regression generating the highest estimate (mean SOC stocks at 38.15 t/ha) and MIMICS-PFT generating the lowest estimate (mean SOC stocks at 24.29 t/ha). We suggest that enhancing process-based models to incorporate newly identified drivers that significantly influence SOC variations in different environments could be key to reducing the discrepancies in these estimates. Our findings underscore the considerable uncertainty in SOC estimates derived from different modelling approaches and emphasize the importance of rigorous out-of-sample validation before applying any one approach in Australia.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"11 8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2023-3016\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-3016","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
Abstract. Spatially explicit prediction of soil organic carbon (SOC) serves as a crucial foundation for effective land management strategies aimed at mitigating soil degradation and assessing carbon sequestration potential. Here, using more than 1000 in-situ observations, we trained two machine learning models (random forest, and K-means coupled with multiple linear regression), and one process-based model (the vertically resolved MIcrobial-MIneral Carbon Stabilization (MIMICS)) to predict SOC content of the top 30 cm of soil in Australia. Parameters of MIMICS were optimized for different site groupings, using two distinct approaches, plant functional types (MIMICS-PFT), and the most influential environmental factors (MIMICS-ENV). We found that at the continental scale, soil bulk density and mean annual temperature are the dominant controls of SOC variation, and that dominant controls vary for different vegetation types. All models showed good performance in SOC predictions with R2 greater than 0.8 during out-of-sample validation with random forest being the most accurate, and SOC in forests is more predictable than that in non-forest soils. Parameter optimization approaches made a notable difference in the performance of MIMICS SOC prediction with MIMICS-ENV performing better than MIMICS-PFT especially in non-forest soils. Digital maps of terrestrial SOC stocks generated using all the models showed similar spatial distribution with higher values in southeast and southwest Australia, but the magnitude of estimated SOC stocks varied. The mean ensemble estimate of SOC stocks was 30.08 t/ha with K-means coupled with multiple linear regression generating the highest estimate (mean SOC stocks at 38.15 t/ha) and MIMICS-PFT generating the lowest estimate (mean SOC stocks at 24.29 t/ha). We suggest that enhancing process-based models to incorporate newly identified drivers that significantly influence SOC variations in different environments could be key to reducing the discrepancies in these estimates. Our findings underscore the considerable uncertainty in SOC estimates derived from different modelling approaches and emphasize the importance of rigorous out-of-sample validation before applying any one approach in Australia.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).