{"title":"防污公约》实施前一年亚洲大陆背风地区 PM2.5 带来的健康风险和空气质量","authors":"Xi Zhang, Masahide Aikawa","doi":"10.1007/s11869-024-01514-5","DOIUrl":null,"url":null,"abstract":"<div><p>The International Maritime Organization (IMO) has formulated stringent ship emission regulations, and the global fuel sulfur limit of 0.50% became effective in 2020. Kitakyushu City is in the coastal suburbs of western Japan, and PM<sub>2.5</sub> had already decreased prior to the global low-sulfur regulation, with concentrations in 2017, 2018, and 2019 of 12.2, 13.4, and 8.1 µg·m<sup>−3</sup>, respectively. The loading particles of the air masses passing through the Bohai Sea, Yellow Sea, and East China Sea in 2019 decreased to 3.4 µg·m<sup>−3</sup>, which was obviously higher than that of other air masses (0.5 µg·m<sup>−3</sup>), and the contribution of nss-SO<sub>4</sub><sup>2−</sup> could reach 56%, followed by OC (23%) and NH<sub>4</sub><sup>+</sup> (21%). Moreover, the characteristics of typical ship-emitted metals (V, Ni, As, Sb, W, and Cd) also changed greatly. Their sum concentrations in 2017, 2018, and 2019 were 10.6, 11.1, and 6.9 ng·m<sup>−3</sup>, respectively, which showed an annual variation similar to that of nss-SO<sub>4</sub><sup>2−</sup>. As for the particle exposure risk, the lowest chronic effect and carcinogenic risk were observed in 2019, with hazard indices (HI) for adults and children of 0.9 and 7.6, and carcinogenic risks (CRs) of 3.8 × 10<sup>−5</sup> and 8.4 × 10<sup>−5</sup>, respectively. In this study, the health risks as well as air quality prior to the enforcement of the MARPOL Treaty in the leeward area of the Asian continent were totally and more precisely studied and evaluated based on the annual dataset; revealing the influence of trans-boundary transportation under individual Chinese regulations on the particle characteristic variations in Kitakyushu, Japan.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Health risks and air quality by PM2.5 in the leeward area of the Asian continent in the preceding year of the MARPOL Treaty enforcement\",\"authors\":\"Xi Zhang, Masahide Aikawa\",\"doi\":\"10.1007/s11869-024-01514-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The International Maritime Organization (IMO) has formulated stringent ship emission regulations, and the global fuel sulfur limit of 0.50% became effective in 2020. Kitakyushu City is in the coastal suburbs of western Japan, and PM<sub>2.5</sub> had already decreased prior to the global low-sulfur regulation, with concentrations in 2017, 2018, and 2019 of 12.2, 13.4, and 8.1 µg·m<sup>−3</sup>, respectively. The loading particles of the air masses passing through the Bohai Sea, Yellow Sea, and East China Sea in 2019 decreased to 3.4 µg·m<sup>−3</sup>, which was obviously higher than that of other air masses (0.5 µg·m<sup>−3</sup>), and the contribution of nss-SO<sub>4</sub><sup>2−</sup> could reach 56%, followed by OC (23%) and NH<sub>4</sub><sup>+</sup> (21%). Moreover, the characteristics of typical ship-emitted metals (V, Ni, As, Sb, W, and Cd) also changed greatly. Their sum concentrations in 2017, 2018, and 2019 were 10.6, 11.1, and 6.9 ng·m<sup>−3</sup>, respectively, which showed an annual variation similar to that of nss-SO<sub>4</sub><sup>2−</sup>. As for the particle exposure risk, the lowest chronic effect and carcinogenic risk were observed in 2019, with hazard indices (HI) for adults and children of 0.9 and 7.6, and carcinogenic risks (CRs) of 3.8 × 10<sup>−5</sup> and 8.4 × 10<sup>−5</sup>, respectively. In this study, the health risks as well as air quality prior to the enforcement of the MARPOL Treaty in the leeward area of the Asian continent were totally and more precisely studied and evaluated based on the annual dataset; revealing the influence of trans-boundary transportation under individual Chinese regulations on the particle characteristic variations in Kitakyushu, Japan.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01514-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01514-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Health risks and air quality by PM2.5 in the leeward area of the Asian continent in the preceding year of the MARPOL Treaty enforcement
The International Maritime Organization (IMO) has formulated stringent ship emission regulations, and the global fuel sulfur limit of 0.50% became effective in 2020. Kitakyushu City is in the coastal suburbs of western Japan, and PM2.5 had already decreased prior to the global low-sulfur regulation, with concentrations in 2017, 2018, and 2019 of 12.2, 13.4, and 8.1 µg·m−3, respectively. The loading particles of the air masses passing through the Bohai Sea, Yellow Sea, and East China Sea in 2019 decreased to 3.4 µg·m−3, which was obviously higher than that of other air masses (0.5 µg·m−3), and the contribution of nss-SO42− could reach 56%, followed by OC (23%) and NH4+ (21%). Moreover, the characteristics of typical ship-emitted metals (V, Ni, As, Sb, W, and Cd) also changed greatly. Their sum concentrations in 2017, 2018, and 2019 were 10.6, 11.1, and 6.9 ng·m−3, respectively, which showed an annual variation similar to that of nss-SO42−. As for the particle exposure risk, the lowest chronic effect and carcinogenic risk were observed in 2019, with hazard indices (HI) for adults and children of 0.9 and 7.6, and carcinogenic risks (CRs) of 3.8 × 10−5 and 8.4 × 10−5, respectively. In this study, the health risks as well as air quality prior to the enforcement of the MARPOL Treaty in the leeward area of the Asian continent were totally and more precisely studied and evaluated based on the annual dataset; revealing the influence of trans-boundary transportation under individual Chinese regulations on the particle characteristic variations in Kitakyushu, Japan.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.