利用关系相似性进行筛选

IF 3 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Vladimir Mic , Pavel Zezula
{"title":"利用关系相似性进行筛选","authors":"Vladimir Mic ,&nbsp;Pavel Zezula","doi":"10.1016/j.is.2024.102345","DOIUrl":null,"url":null,"abstract":"<div><p>For decades, the success of the similarity search has been based on detailed quantifications of pairwise similarities of objects. Currently, the search features have become much more precise but also bulkier, and the similarity computations are more time-consuming. We show that nearly no precise similarity quantifications are needed to evaluate the <span><math><mi>k</mi></math></span> nearest neighbours (<span><math><mi>k</mi></math></span>NN) queries that dominate real-life applications. Based on the well-known fact that a selection of the most similar alternative out of several options is a much easier task than deciding the absolute similarity scores, we propose the search based on an epistemologically simpler concept of relational similarity. Having arbitrary objects <span><math><mrow><mi>q</mi><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> from the search domain, the <span><math><mi>k</mi></math></span>NN search is solvable just by the ability to choose the more similar object to <span><math><mi>q</mi></math></span> out of <span><math><mrow><msub><mrow><mi>o</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. To support the filtering efficiency, we also consider a neutral option, i.e., equal similarities of <span><math><mrow><mi>q</mi><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. We formalise such concept and discuss its advantages with respect to similarity quantifications, namely the efficiency, robustness and scalability with respect to the dataset size. Our pioneering implementation of the relational similarity search for the Euclidean and Cosine spaces demonstrates robust filtering power and efficiency compared to several contemporary techniques.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"122 ","pages":"Article 102345"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924000036/pdfft?md5=02857cd176b247b381941578e10c094d&pid=1-s2.0-S0306437924000036-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Filtering with relational similarity\",\"authors\":\"Vladimir Mic ,&nbsp;Pavel Zezula\",\"doi\":\"10.1016/j.is.2024.102345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For decades, the success of the similarity search has been based on detailed quantifications of pairwise similarities of objects. Currently, the search features have become much more precise but also bulkier, and the similarity computations are more time-consuming. We show that nearly no precise similarity quantifications are needed to evaluate the <span><math><mi>k</mi></math></span> nearest neighbours (<span><math><mi>k</mi></math></span>NN) queries that dominate real-life applications. Based on the well-known fact that a selection of the most similar alternative out of several options is a much easier task than deciding the absolute similarity scores, we propose the search based on an epistemologically simpler concept of relational similarity. Having arbitrary objects <span><math><mrow><mi>q</mi><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> from the search domain, the <span><math><mi>k</mi></math></span>NN search is solvable just by the ability to choose the more similar object to <span><math><mi>q</mi></math></span> out of <span><math><mrow><msub><mrow><mi>o</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. To support the filtering efficiency, we also consider a neutral option, i.e., equal similarities of <span><math><mrow><mi>q</mi><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>,</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. We formalise such concept and discuss its advantages with respect to similarity quantifications, namely the efficiency, robustness and scalability with respect to the dataset size. Our pioneering implementation of the relational similarity search for the Euclidean and Cosine spaces demonstrates robust filtering power and efficiency compared to several contemporary techniques.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"122 \",\"pages\":\"Article 102345\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000036/pdfft?md5=02857cd176b247b381941578e10c094d&pid=1-s2.0-S0306437924000036-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000036\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000036","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,相似性搜索的成功一直基于对对象成对相似性的详细量化。目前,搜索特征变得更加精确,但也更加庞大,而且相似性计算也更加耗时。我们的研究表明,在现实生活中占主导地位的 k 近邻(kNN)查询几乎不需要精确的相似性量化。众所周知,从多个选项中选择最相似的选项比确定绝对相似度得分要容易得多,基于这一事实,我们提出了基于认识论上更简单的关系相似性概念的搜索方法。如果搜索域中有任意对象 q、o1、o2,那么 kNN 搜索只需从 o1、o2 中选择与 q 更相似的对象即可。为了提高过滤效率,我们还考虑了中性选项,即 q,o1 和 q,o2 的相似度相等。我们正式提出了这一概念,并讨论了它在相似性量化方面的优势,即效率、鲁棒性和与数据集大小相关的可扩展性。我们开创性地实现了欧几里得空间和余弦空间的关系相似性搜索,与几种当代技术相比,显示出强大的过滤能力和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filtering with relational similarity

For decades, the success of the similarity search has been based on detailed quantifications of pairwise similarities of objects. Currently, the search features have become much more precise but also bulkier, and the similarity computations are more time-consuming. We show that nearly no precise similarity quantifications are needed to evaluate the k nearest neighbours (kNN) queries that dominate real-life applications. Based on the well-known fact that a selection of the most similar alternative out of several options is a much easier task than deciding the absolute similarity scores, we propose the search based on an epistemologically simpler concept of relational similarity. Having arbitrary objects q,o1,o2 from the search domain, the kNN search is solvable just by the ability to choose the more similar object to q out of o1,o2. To support the filtering efficiency, we also consider a neutral option, i.e., equal similarities of q,o1 and q,o2. We formalise such concept and discuss its advantages with respect to similarity quantifications, namely the efficiency, robustness and scalability with respect to the dataset size. Our pioneering implementation of the relational similarity search for the Euclidean and Cosine spaces demonstrates robust filtering power and efficiency compared to several contemporary techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信