具有位错的宇宙弦时空中的谐波振荡器在 1/r^2$ 美元斥势和旋转框架效应下的情况

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Faizuddin Ahmed
{"title":"具有位错的宇宙弦时空中的谐波振荡器在 1/r^2$ 美元斥势和旋转框架效应下的情况","authors":"Faizuddin Ahmed","doi":"10.1007/s00601-023-01874-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the behavior of a quantum harmonic oscillator in the presence of a repulsive inverse-square potential within a cosmic string space-time that contains a dislocation. Our objective is to find eigenvalue solutions of this quantum system by analytically solving the Schrödinger wave equation through the confluent hypergeometric function. Furthermore, we explore the effects of a rotational frame on the quantum harmonic oscillator within this specific space-time geometry, incorporating the same repulsive potential. Following a similar procedure, we successfully determine the eigenvalue solutions for this quantum system. Importantly, our results reveal that the eigenvalue solutions are significantly influenced by four key parameters: the cosmic string, the dislocation parameter associated with the geometry, the repulsive inverse-square potential, and the constant angular speed of the rotating frame. The presence of these parameters induces a shift in the energy spectrum, thereby causing modifications to the behavior of the quantum harmonic oscillator compared to the known results.</p>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Oscillator in Cosmic String Space-Time with Dislocation Under a Repulsive $$1/r^2$$ Potential and Rotational Frame Effects\",\"authors\":\"Faizuddin Ahmed\",\"doi\":\"10.1007/s00601-023-01874-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the behavior of a quantum harmonic oscillator in the presence of a repulsive inverse-square potential within a cosmic string space-time that contains a dislocation. Our objective is to find eigenvalue solutions of this quantum system by analytically solving the Schrödinger wave equation through the confluent hypergeometric function. Furthermore, we explore the effects of a rotational frame on the quantum harmonic oscillator within this specific space-time geometry, incorporating the same repulsive potential. Following a similar procedure, we successfully determine the eigenvalue solutions for this quantum system. Importantly, our results reveal that the eigenvalue solutions are significantly influenced by four key parameters: the cosmic string, the dislocation parameter associated with the geometry, the repulsive inverse-square potential, and the constant angular speed of the rotating frame. The presence of these parameters induces a shift in the energy spectrum, thereby causing modifications to the behavior of the quantum harmonic oscillator compared to the known results.</p>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s00601-023-01874-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s00601-023-01874-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个量子谐振子在包含位错的宇宙弦时空中存在斥性反平方势时的行为。我们的目标是通过汇合超几何函数分析求解薛定谔波方程,找到这个量子系统的特征值解。此外,我们还探索了在这一特定时空几何中,旋转框架对量子谐振子的影响,并结合了相同的斥力势。按照类似的程序,我们成功地确定了这个量子系统的特征值解。重要的是,我们的结果表明,特征值解受到四个关键参数的显著影响:宇宙弦、与几何相关的位错参数、斥力反平方势和旋转框架的恒定角速度。这些参数的存在导致了能谱的偏移,从而使量子谐振子的行为与已知结果相比发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harmonic Oscillator in Cosmic String Space-Time with Dislocation Under a Repulsive $$1/r^2$$ Potential and Rotational Frame Effects

Harmonic Oscillator in Cosmic String Space-Time with Dislocation Under a Repulsive $$1/r^2$$ Potential and Rotational Frame Effects

In this paper, we investigate the behavior of a quantum harmonic oscillator in the presence of a repulsive inverse-square potential within a cosmic string space-time that contains a dislocation. Our objective is to find eigenvalue solutions of this quantum system by analytically solving the Schrödinger wave equation through the confluent hypergeometric function. Furthermore, we explore the effects of a rotational frame on the quantum harmonic oscillator within this specific space-time geometry, incorporating the same repulsive potential. Following a similar procedure, we successfully determine the eigenvalue solutions for this quantum system. Importantly, our results reveal that the eigenvalue solutions are significantly influenced by four key parameters: the cosmic string, the dislocation parameter associated with the geometry, the repulsive inverse-square potential, and the constant angular speed of the rotating frame. The presence of these parameters induces a shift in the energy spectrum, thereby causing modifications to the behavior of the quantum harmonic oscillator compared to the known results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信