经过表面安装的有限高度圆筒的振荡流的直接数值模拟

IF 1.3 4区 工程技术 Q3 MECHANICS
Abhishek Kumar, Prashant Kumar, Shaligram Tiwari
{"title":"经过表面安装的有限高度圆筒的振荡流的直接数值模拟","authors":"Abhishek Kumar, Prashant Kumar, Shaligram Tiwari","doi":"10.1088/1873-7005/ad18dc","DOIUrl":null,"url":null,"abstract":"In this work, a surface-mounted circular cylinder with a fixed aspect ratio (ratio of height of the cylinder to its diameter) of 5 is subjected to a non-zero mean oscillating flow with a range of frequencies and amplitudes. Three-dimensional direct numerical simulations are then conducted on this finite-height cylinder. The mass and momentum equations are resolved using the finite volume-based Open Source Field Operation and Manipulation (OpenFOAM). A fixed Reynolds number <inline-formula>\n<tex-math><?CDATA $\\left( {{\\text{Re}} = \\,{{{{U_o}D}}/{\\nu }}} \\right)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mrow><mml:mtext>Re</mml:mtext></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>U</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:mi>ν</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mfenced></mml:math>\n<inline-graphic xlink:href=\"fdrad18dcieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of 250 is used in this study, which is defined based on mean velocity at the inlet (<inline-formula>\n<tex-math><?CDATA ${U_o}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>U</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"fdrad18dcieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) and cylinder diameter (<italic toggle=\"yes\">D</italic>). Here <inline-formula>\n<tex-math><?CDATA $\\nu $?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ν</mml:mi></mml:math>\n<inline-graphic xlink:href=\"fdrad18dcieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is the kinematic viscosity of the working fluid. Non-dimensional velocity oscillation amplitude (<inline-formula>\n<tex-math><?CDATA ${A^{\\,*}} = {{a}/{{{U_o}}}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>A</mml:mi><mml:mrow><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>U</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"fdrad18dcieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) is varied from 0.1 to 0.3, while the non-dimensional oscillation frequency (<inline-formula>\n<tex-math><?CDATA ${\\,\\,f^{\\,*}} = {{f}/{{{f_o}}}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:mrow><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"fdrad18dcieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) takes the values of 0.33, 0.5, 1, 2, and 3. Here <italic toggle=\"yes\">a</italic> and <italic toggle=\"yes\">f</italic> are the dimensional oscillation amplitude and frequency, respectively and <inline-formula>\n<tex-math><?CDATA ${f_o}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"fdrad18dcieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is the vortex shedding frequency corresponding to a uniform flow at Re = 250. The three-dimensional vortex structures, presented with the help of iso-<italic toggle=\"yes\">Q</italic> surfaces, show that the oscillating flow changes the size and shape of the hairpin-shaped vortices. Wake is found to be synchronized with the oscillation frequency at <italic toggle=\"yes\">f</italic>* = 2 for each value of the <italic toggle=\"yes\">A</italic>* and results in the maximum lift force on the cylinder. Hilbert Huang transformation analysis of the transverse velocity signals at a specific point in the wake reveals that the wake is more complex and aperiodic in nature for <italic toggle=\"yes\">f</italic>* values of 0.33, 0.5, and 1, whereas it is periodic for <italic toggle=\"yes\">f</italic>* = 2 and 3. In order to further disclose the nonlinearity associated with the oscillating flow, the degree of stationarity is discussed corresponding to each value of <italic toggle=\"yes\">A</italic>* and <italic toggle=\"yes\">f</italic>*. Dynamic mode decomposition is exploited to obtain information about the coherent vortical structures and their spatial and temporal behavior in the wake with a change in the value of <italic toggle=\"yes\">f</italic>*. Effects of <italic toggle=\"yes\">A</italic>* and <italic toggle=\"yes\">f</italic>* on the dynamic characteristics are also investigated.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct numerical simulations on oscillating flow past surface-mounted finite-height circular cylinder\",\"authors\":\"Abhishek Kumar, Prashant Kumar, Shaligram Tiwari\",\"doi\":\"10.1088/1873-7005/ad18dc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a surface-mounted circular cylinder with a fixed aspect ratio (ratio of height of the cylinder to its diameter) of 5 is subjected to a non-zero mean oscillating flow with a range of frequencies and amplitudes. Three-dimensional direct numerical simulations are then conducted on this finite-height cylinder. The mass and momentum equations are resolved using the finite volume-based Open Source Field Operation and Manipulation (OpenFOAM). A fixed Reynolds number <inline-formula>\\n<tex-math><?CDATA $\\\\left( {{\\\\text{Re}} = \\\\,{{{{U_o}D}}/{\\\\nu }}} \\\\right)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mrow><mml:mtext>Re</mml:mtext></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>U</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:mi>ν</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mfenced></mml:math>\\n<inline-graphic xlink:href=\\\"fdrad18dcieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> of 250 is used in this study, which is defined based on mean velocity at the inlet (<inline-formula>\\n<tex-math><?CDATA ${U_o}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>U</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"fdrad18dcieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) and cylinder diameter (<italic toggle=\\\"yes\\\">D</italic>). Here <inline-formula>\\n<tex-math><?CDATA $\\\\nu $?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ν</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"fdrad18dcieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is the kinematic viscosity of the working fluid. Non-dimensional velocity oscillation amplitude (<inline-formula>\\n<tex-math><?CDATA ${A^{\\\\,*}} = {{a}/{{{U_o}}}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi>A</mml:mi><mml:mrow><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>U</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"fdrad18dcieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) is varied from 0.1 to 0.3, while the non-dimensional oscillation frequency (<inline-formula>\\n<tex-math><?CDATA ${\\\\,\\\\,f^{\\\\,*}} = {{f}/{{{f_o}}}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:mrow><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"fdrad18dcieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) takes the values of 0.33, 0.5, 1, 2, and 3. Here <italic toggle=\\\"yes\\\">a</italic> and <italic toggle=\\\"yes\\\">f</italic> are the dimensional oscillation amplitude and frequency, respectively and <inline-formula>\\n<tex-math><?CDATA ${f_o}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mi>o</mml:mi></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"fdrad18dcieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is the vortex shedding frequency corresponding to a uniform flow at Re = 250. The three-dimensional vortex structures, presented with the help of iso-<italic toggle=\\\"yes\\\">Q</italic> surfaces, show that the oscillating flow changes the size and shape of the hairpin-shaped vortices. Wake is found to be synchronized with the oscillation frequency at <italic toggle=\\\"yes\\\">f</italic>* = 2 for each value of the <italic toggle=\\\"yes\\\">A</italic>* and results in the maximum lift force on the cylinder. Hilbert Huang transformation analysis of the transverse velocity signals at a specific point in the wake reveals that the wake is more complex and aperiodic in nature for <italic toggle=\\\"yes\\\">f</italic>* values of 0.33, 0.5, and 1, whereas it is periodic for <italic toggle=\\\"yes\\\">f</italic>* = 2 and 3. In order to further disclose the nonlinearity associated with the oscillating flow, the degree of stationarity is discussed corresponding to each value of <italic toggle=\\\"yes\\\">A</italic>* and <italic toggle=\\\"yes\\\">f</italic>*. Dynamic mode decomposition is exploited to obtain information about the coherent vortical structures and their spatial and temporal behavior in the wake with a change in the value of <italic toggle=\\\"yes\\\">f</italic>*. Effects of <italic toggle=\\\"yes\\\">A</italic>* and <italic toggle=\\\"yes\\\">f</italic>* on the dynamic characteristics are also investigated.\",\"PeriodicalId\":56311,\"journal\":{\"name\":\"Fluid Dynamics Research\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1873-7005/ad18dc\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ad18dc","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,一个固定长宽比(圆柱体高度与直径之比)为 5 的表面安装圆形圆柱体受到一系列频率和振幅的非零平均振荡流的作用。然后对这个有限高度的圆柱体进行三维直接数值模拟。质量和动量方程使用基于有限体积的开放源场运算和操纵(OpenFOAM)进行求解。本研究中使用的固定雷诺数 Re=UoD/ν 为 250,其定义基于入口处的平均速度 (Uo) 和圆柱体直径 (D)。这里,ν 是工作流体的运动粘度。非维度速度振荡幅度(A∗=a/Uo)的变化范围为 0.1 至 0.3,而非维度振荡频率(f∗=f/fo)的取值范围为 0.33、0.5、1、2 和 3。这里,a 和 f 分别是维振荡振幅和频率,fo 是 Re = 250 时与均匀流相对应的涡流脱落频率。借助等Q面显示的三维涡旋结构表明,振荡流改变了发夹形涡旋的大小和形状。在每个 A* 值上,唤醒都与 f* = 2 处的振荡频率同步,并在气缸上产生最大升力。对湍流中特定点的横向速度信号进行希尔伯特-黄变换分析后发现,当 f* 值为 0.33、0.5 和 1 时,湍流的性质更为复杂,呈非周期性;而当 f* = 2 和 3 时,湍流则呈周期性。为了进一步揭示与振荡流相关的非线性,讨论了与 A* 和 f* 值相对应的静止程度。利用动态模态分解获得了有关相干涡旋结构的信息,以及随着 f* 值的变化它们在尾流中的空间和时间行为。此外,还研究了 A* 和 f* 对动态特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct numerical simulations on oscillating flow past surface-mounted finite-height circular cylinder
In this work, a surface-mounted circular cylinder with a fixed aspect ratio (ratio of height of the cylinder to its diameter) of 5 is subjected to a non-zero mean oscillating flow with a range of frequencies and amplitudes. Three-dimensional direct numerical simulations are then conducted on this finite-height cylinder. The mass and momentum equations are resolved using the finite volume-based Open Source Field Operation and Manipulation (OpenFOAM). A fixed Reynolds number Re=UoD/ν of 250 is used in this study, which is defined based on mean velocity at the inlet ( Uo ) and cylinder diameter (D). Here ν is the kinematic viscosity of the working fluid. Non-dimensional velocity oscillation amplitude ( A=a/Uo ) is varied from 0.1 to 0.3, while the non-dimensional oscillation frequency ( f=f/fo ) takes the values of 0.33, 0.5, 1, 2, and 3. Here a and f are the dimensional oscillation amplitude and frequency, respectively and fo is the vortex shedding frequency corresponding to a uniform flow at Re = 250. The three-dimensional vortex structures, presented with the help of iso-Q surfaces, show that the oscillating flow changes the size and shape of the hairpin-shaped vortices. Wake is found to be synchronized with the oscillation frequency at f* = 2 for each value of the A* and results in the maximum lift force on the cylinder. Hilbert Huang transformation analysis of the transverse velocity signals at a specific point in the wake reveals that the wake is more complex and aperiodic in nature for f* values of 0.33, 0.5, and 1, whereas it is periodic for f* = 2 and 3. In order to further disclose the nonlinearity associated with the oscillating flow, the degree of stationarity is discussed corresponding to each value of A* and f*. Dynamic mode decomposition is exploited to obtain information about the coherent vortical structures and their spatial and temporal behavior in the wake with a change in the value of f*. Effects of A* and f* on the dynamic characteristics are also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信