基于并行机制的地面微重力模拟系统研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaxi Jin, Xuan Sun, Dong Yu, Zhaobo Chen
{"title":"基于并行机制的地面微重力模拟系统研究","authors":"Jiaxi Jin,&nbsp;Xuan Sun,&nbsp;Dong Yu,&nbsp;Zhaobo Chen","doi":"10.1007/s12217-023-10094-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a reconfigurable satellite ground microgravity simulation system based on a parallel mechanism, which allows cxsfor adjustable gravity coefficients and can simulate three-dimensional space movement with fast response and high accuracy. Firstly, the parallel motion platform and parallel six-dimensional force sensor designed specifically for the microgravity simulation system serve as the mechanical structure of the system. Secondly, a control system for simulating microgravity has been proposed, which includes a data acquisition component and a motion control component. Thirdly, a novel microgravity simulation algorithm, which can adjust the gravity coefficient and is based on the constant variation method, was proposed to establish the mapping relationship between the six-dimensional external force and displacement. Finally, the six-dimensional force sensor is statically calibrated and demonstrated excellent measurement performance. After implementing gravity compensation through surface polynomial fitting, the motion platform for microgravity simulation can react within 0.15 s upon detection of a force signal by the sensor, with a response error of less than 3%. The ground microgravity simulation system based on parallel mechanisms has been successfully applied to test the tolerance capability of reconfigurable satellite docking interfaces.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Ground Microgravity Simulation System Based on Parallel Mechanism\",\"authors\":\"Jiaxi Jin,&nbsp;Xuan Sun,&nbsp;Dong Yu,&nbsp;Zhaobo Chen\",\"doi\":\"10.1007/s12217-023-10094-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a reconfigurable satellite ground microgravity simulation system based on a parallel mechanism, which allows cxsfor adjustable gravity coefficients and can simulate three-dimensional space movement with fast response and high accuracy. Firstly, the parallel motion platform and parallel six-dimensional force sensor designed specifically for the microgravity simulation system serve as the mechanical structure of the system. Secondly, a control system for simulating microgravity has been proposed, which includes a data acquisition component and a motion control component. Thirdly, a novel microgravity simulation algorithm, which can adjust the gravity coefficient and is based on the constant variation method, was proposed to establish the mapping relationship between the six-dimensional external force and displacement. Finally, the six-dimensional force sensor is statically calibrated and demonstrated excellent measurement performance. After implementing gravity compensation through surface polynomial fitting, the motion platform for microgravity simulation can react within 0.15 s upon detection of a force signal by the sensor, with a response error of less than 3%. The ground microgravity simulation system based on parallel mechanisms has been successfully applied to test the tolerance capability of reconfigurable satellite docking interfaces.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10094-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10094-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文提出了一种基于并联机构的可重构卫星地面微重力仿真系统,该系统可实现重力系数的cxs可调,并能以快速响应和高精度模拟三维空间运动。首先,专为微重力模拟系统设计的平行运动平台和平行六维力传感器是该系统的机械结构。其次,提出了模拟微重力的控制系统,包括数据采集组件和运动控制组件。第三,提出了一种可调节重力系数的新型微重力模拟算法,该算法基于恒定变化法,建立了六维外力与位移之间的映射关系。最后,对六维力传感器进行了静态校准,并展示了出色的测量性能。通过表面多项式拟合实现重力补偿后,用于微重力模拟的运动平台可在传感器检测到力信号后的 0.15 秒内做出反应,响应误差小于 3%。基于并联机构的地面微重力模拟系统已成功应用于测试可重构卫星对接界面的耐受能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Ground Microgravity Simulation System Based on Parallel Mechanism

This paper presents a reconfigurable satellite ground microgravity simulation system based on a parallel mechanism, which allows cxsfor adjustable gravity coefficients and can simulate three-dimensional space movement with fast response and high accuracy. Firstly, the parallel motion platform and parallel six-dimensional force sensor designed specifically for the microgravity simulation system serve as the mechanical structure of the system. Secondly, a control system for simulating microgravity has been proposed, which includes a data acquisition component and a motion control component. Thirdly, a novel microgravity simulation algorithm, which can adjust the gravity coefficient and is based on the constant variation method, was proposed to establish the mapping relationship between the six-dimensional external force and displacement. Finally, the six-dimensional force sensor is statically calibrated and demonstrated excellent measurement performance. After implementing gravity compensation through surface polynomial fitting, the motion platform for microgravity simulation can react within 0.15 s upon detection of a force signal by the sensor, with a response error of less than 3%. The ground microgravity simulation system based on parallel mechanisms has been successfully applied to test the tolerance capability of reconfigurable satellite docking interfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信