Andrés Caicedo , Abigail Benavides-Almeida , Alissen Haro-Vinueza , José Peña-Cisneros , Álvaro A. Pérez-Meza , Jeremy Michelson , Sebastian Peñaherrera , Martin Picard
{"title":"解码细胞外 mtDNA 的性质和复杂性:类型及其对健康和疾病的影响","authors":"Andrés Caicedo , Abigail Benavides-Almeida , Alissen Haro-Vinueza , José Peña-Cisneros , Álvaro A. Pérez-Meza , Jeremy Michelson , Sebastian Peñaherrera , Martin Picard","doi":"10.1016/j.mito.2024.101848","DOIUrl":null,"url":null,"abstract":"<div><p>The mitochondrial DNA (mtDNA) is replicated and canonically functions within intracellular mitochondria, but recent discoveries reveal that the mtDNA has another exciting extracellular life. mtDNA fragments and mitochondria-containing vesicular structures are detected at high concentrations in cell-free forms, in different biofluids. Commonly referred to as cell-free mtDNA (cf-mtDNA), the field is currently without a comprehensive classification system that acknowledges the various biological forms of mtDNA and whole mitochondria existing outside the cell. This absence of classification hampers the creation of precise and consistent quantification methods across different laboratories, which is crucial for unraveling the molecular and biological characteristics of mtDNA. In this article, we integrate recent findings to propose a classification for different types of Extracellular mtDNA [ex-mtDNA]. The major biologically distinct types include: Naked mtDNA [N-mtDNA], mtDNA within non-mitochondrial Membranes [M-mtDNA], Extracellular mitochondria [exM-mtDNA], and mtDNA within Mitochondria enclosed in a Membrane [MM-mtDNA]. We outline the challenges associated with accurately quantifying these ex-mtDNA types, suggest potential physiological roles for each ex-mtDNA type, and explore how this classification could establish a foundation for future research endeavors and further analysis and definitions for ex-mtDNA. By proposing this classification of circulating mtDNA forms, we draw a parallel with the clinically recognized forms of cholesterol, such as HDL and LDL, to illustrate potential future significance in a similar manner. While not directly analogous, these mtDNA forms may one day be as biologically relevant in clinical interpretation as cholesterol fractions are currently. We also discuss how advancing methodologies to reliably quantify distinct ex-mtDNA forms could significantly enhance their utility as health or disease biomarkers, and how their application may offer innovative therapeutic approaches.</p></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"75 ","pages":"Article 101848"},"PeriodicalIF":3.9000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the nature and complexity of extracellular mtDNA: Types and implications for health and disease\",\"authors\":\"Andrés Caicedo , Abigail Benavides-Almeida , Alissen Haro-Vinueza , José Peña-Cisneros , Álvaro A. Pérez-Meza , Jeremy Michelson , Sebastian Peñaherrera , Martin Picard\",\"doi\":\"10.1016/j.mito.2024.101848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mitochondrial DNA (mtDNA) is replicated and canonically functions within intracellular mitochondria, but recent discoveries reveal that the mtDNA has another exciting extracellular life. mtDNA fragments and mitochondria-containing vesicular structures are detected at high concentrations in cell-free forms, in different biofluids. Commonly referred to as cell-free mtDNA (cf-mtDNA), the field is currently without a comprehensive classification system that acknowledges the various biological forms of mtDNA and whole mitochondria existing outside the cell. This absence of classification hampers the creation of precise and consistent quantification methods across different laboratories, which is crucial for unraveling the molecular and biological characteristics of mtDNA. In this article, we integrate recent findings to propose a classification for different types of Extracellular mtDNA [ex-mtDNA]. The major biologically distinct types include: Naked mtDNA [N-mtDNA], mtDNA within non-mitochondrial Membranes [M-mtDNA], Extracellular mitochondria [exM-mtDNA], and mtDNA within Mitochondria enclosed in a Membrane [MM-mtDNA]. We outline the challenges associated with accurately quantifying these ex-mtDNA types, suggest potential physiological roles for each ex-mtDNA type, and explore how this classification could establish a foundation for future research endeavors and further analysis and definitions for ex-mtDNA. By proposing this classification of circulating mtDNA forms, we draw a parallel with the clinically recognized forms of cholesterol, such as HDL and LDL, to illustrate potential future significance in a similar manner. While not directly analogous, these mtDNA forms may one day be as biologically relevant in clinical interpretation as cholesterol fractions are currently. We also discuss how advancing methodologies to reliably quantify distinct ex-mtDNA forms could significantly enhance their utility as health or disease biomarkers, and how their application may offer innovative therapeutic approaches.</p></div>\",\"PeriodicalId\":18606,\"journal\":{\"name\":\"Mitochondrion\",\"volume\":\"75 \",\"pages\":\"Article 101848\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrion\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567724924000060\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724924000060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Decoding the nature and complexity of extracellular mtDNA: Types and implications for health and disease
The mitochondrial DNA (mtDNA) is replicated and canonically functions within intracellular mitochondria, but recent discoveries reveal that the mtDNA has another exciting extracellular life. mtDNA fragments and mitochondria-containing vesicular structures are detected at high concentrations in cell-free forms, in different biofluids. Commonly referred to as cell-free mtDNA (cf-mtDNA), the field is currently without a comprehensive classification system that acknowledges the various biological forms of mtDNA and whole mitochondria existing outside the cell. This absence of classification hampers the creation of precise and consistent quantification methods across different laboratories, which is crucial for unraveling the molecular and biological characteristics of mtDNA. In this article, we integrate recent findings to propose a classification for different types of Extracellular mtDNA [ex-mtDNA]. The major biologically distinct types include: Naked mtDNA [N-mtDNA], mtDNA within non-mitochondrial Membranes [M-mtDNA], Extracellular mitochondria [exM-mtDNA], and mtDNA within Mitochondria enclosed in a Membrane [MM-mtDNA]. We outline the challenges associated with accurately quantifying these ex-mtDNA types, suggest potential physiological roles for each ex-mtDNA type, and explore how this classification could establish a foundation for future research endeavors and further analysis and definitions for ex-mtDNA. By proposing this classification of circulating mtDNA forms, we draw a parallel with the clinically recognized forms of cholesterol, such as HDL and LDL, to illustrate potential future significance in a similar manner. While not directly analogous, these mtDNA forms may one day be as biologically relevant in clinical interpretation as cholesterol fractions are currently. We also discuss how advancing methodologies to reliably quantify distinct ex-mtDNA forms could significantly enhance their utility as health or disease biomarkers, and how their application may offer innovative therapeutic approaches.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.