{"title":"锂-锰-欧-氧体系的浓度四面体","authors":"G. A. Buzanov, G. D. Nipan","doi":"10.1134/S0012501623700124","DOIUrl":null,"url":null,"abstract":"<p>The isothermal concentration tetrahedron of the Li–Mn–Eu–O system was constructed for the first time by topological modeling based on fragmentary experimental data. The tetrahedron describes possible solid-state transformations in the system, which occur at a constant temperature with pressure varying. Thirty-two equilibria involving four crystalline phases were identified.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration Tetrahedron of the Li–Mn–Eu–O System\",\"authors\":\"G. A. Buzanov, G. D. Nipan\",\"doi\":\"10.1134/S0012501623700124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The isothermal concentration tetrahedron of the Li–Mn–Eu–O system was constructed for the first time by topological modeling based on fragmentary experimental data. The tetrahedron describes possible solid-state transformations in the system, which occur at a constant temperature with pressure varying. Thirty-two equilibria involving four crystalline phases were identified.</p>\",\"PeriodicalId\":532,\"journal\":{\"name\":\"Doklady Physical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0012501623700124\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0012501623700124","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Concentration Tetrahedron of the Li–Mn–Eu–O System
The isothermal concentration tetrahedron of the Li–Mn–Eu–O system was constructed for the first time by topological modeling based on fragmentary experimental data. The tetrahedron describes possible solid-state transformations in the system, which occur at a constant temperature with pressure varying. Thirty-two equilibria involving four crystalline phases were identified.
期刊介绍:
Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.