反拉普拉斯变换的规范化摩尔化

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED
Pierre Maréchal, Faouzi Triki, Walter C Simo Tao Lee
{"title":"反拉普拉斯变换的规范化摩尔化","authors":"Pierre Maréchal, Faouzi Triki, Walter C Simo Tao Lee","doi":"10.1088/1361-6420/ad1609","DOIUrl":null,"url":null,"abstract":"In this paper we study the inverse Laplace transform. We first derive a new global logarithmic stability estimate that shows that the inversion is severely ill-posed. Then we propose a regularization method to compute the inverse Laplace transform using the concept of mollification. Taking into account the exponential instability we derive a criterion for selection of the regularization parameter. We show that by taking the optimal value of this parameter we improve significantly the convergence of the method. Finally, making use of the holomorphic extension of the Laplace transform, we suggest a new PDEs based numerical method for the computation of the solution. The effectiveness of the proposed regularization method is demonstrated through several numerical examples.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization of the inverse Laplace transform by mollification\",\"authors\":\"Pierre Maréchal, Faouzi Triki, Walter C Simo Tao Lee\",\"doi\":\"10.1088/1361-6420/ad1609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the inverse Laplace transform. We first derive a new global logarithmic stability estimate that shows that the inversion is severely ill-posed. Then we propose a regularization method to compute the inverse Laplace transform using the concept of mollification. Taking into account the exponential instability we derive a criterion for selection of the regularization parameter. We show that by taking the optimal value of this parameter we improve significantly the convergence of the method. Finally, making use of the holomorphic extension of the Laplace transform, we suggest a new PDEs based numerical method for the computation of the solution. The effectiveness of the proposed regularization method is demonstrated through several numerical examples.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad1609\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad1609","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究反拉普拉斯变换。我们首先推导出一个新的全局对数稳定性估计值,它表明反演是一个严重的问题。然后,我们提出了一种正则化方法,利用 "钝化 "概念计算反拉普拉斯变换。考虑到指数不稳定性,我们得出了正则化参数的选择标准。我们证明,通过取该参数的最优值,可以显著改善该方法的收敛性。最后,利用拉普拉斯变换的全态扩展,我们提出了一种新的基于 PDEs 的数值方法来计算解。我们通过几个数值示例证明了所提出的正则化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularization of the inverse Laplace transform by mollification
In this paper we study the inverse Laplace transform. We first derive a new global logarithmic stability estimate that shows that the inversion is severely ill-posed. Then we propose a regularization method to compute the inverse Laplace transform using the concept of mollification. Taking into account the exponential instability we derive a criterion for selection of the regularization parameter. We show that by taking the optimal value of this parameter we improve significantly the convergence of the method. Finally, making use of the holomorphic extension of the Laplace transform, we suggest a new PDEs based numerical method for the computation of the solution. The effectiveness of the proposed regularization method is demonstrated through several numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信