通过细分实现多变量紧凑支持的 C∞ 函数

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Maria Charina , Costanza Conti , Nira Dyn
{"title":"通过细分实现多变量紧凑支持的 C∞ 函数","authors":"Maria Charina ,&nbsp;Costanza Conti ,&nbsp;Nira Dyn","doi":"10.1016/j.acha.2024.101630","DOIUrl":null,"url":null,"abstract":"<div><p>This paper discusses the generation of multivariate <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> functions with compact small supports by subdivision schemes. Following the construction of such a univariate function, called <em>Up-function</em>, by a non-stationary scheme based on masks of spline subdivision schemes of growing degrees, we term the multivariate functions we generate <em>Up-like functions</em>. We generate them by non-stationary schemes based on masks of three-directional box-splines of growing supports. To analyze the convergence and smoothness of these non-stationary schemes, we develop new tools which apply to a wider class of schemes than the class we study. With our method for achieving small compact supports, we obtain in the univariate case, Up-like functions with supports <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><mo>]</mo></math></span> in comparison to the support <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> of the Up-function. Examples of univariate and bivariate Up-like functions are given. As in the univariate case, the construction of Up-like functions can motivate the generation of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> compactly supported wavelets of small support in any dimension.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101630"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000071/pdfft?md5=1ad3a9e4a30806ec403f504079a4421d&pid=1-s2.0-S1063520324000071-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multivariate compactly supported C∞ functions by subdivision\",\"authors\":\"Maria Charina ,&nbsp;Costanza Conti ,&nbsp;Nira Dyn\",\"doi\":\"10.1016/j.acha.2024.101630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper discusses the generation of multivariate <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> functions with compact small supports by subdivision schemes. Following the construction of such a univariate function, called <em>Up-function</em>, by a non-stationary scheme based on masks of spline subdivision schemes of growing degrees, we term the multivariate functions we generate <em>Up-like functions</em>. We generate them by non-stationary schemes based on masks of three-directional box-splines of growing supports. To analyze the convergence and smoothness of these non-stationary schemes, we develop new tools which apply to a wider class of schemes than the class we study. With our method for achieving small compact supports, we obtain in the univariate case, Up-like functions with supports <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><mo>]</mo></math></span> in comparison to the support <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> of the Up-function. Examples of univariate and bivariate Up-like functions are given. As in the univariate case, the construction of Up-like functions can motivate the generation of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> compactly supported wavelets of small support in any dimension.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"70 \",\"pages\":\"Article 101630\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000071/pdfft?md5=1ad3a9e4a30806ec403f504079a4421d&pid=1-s2.0-S1063520324000071-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000071\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000071","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论通过细分方案生成具有紧凑小支撑的多元 C∞ 函数。根据基于度数不断增长的样条细分方案掩码的非稳态方案构建的单变量函数(称为Up-函数),我们将生成的多变量函数称为Up-类函数。我们通过基于支持度不断增长的三向盒样条曲线掩码的非稳态方案生成它们。为了分析这些非稳态方案的收敛性和平滑性,我们开发了新的工具,这些工具适用于比我们所研究的方案更广泛的方案类别。用我们的方法实现了小的紧凑支撑,在单变量情况下,我们得到了支撑[0,1+ϵ]的类Up函数,与Up函数的支撑[0,2]相比。本文给出了单变量和双变量类 Up 函数的例子。与单变量情况一样,Up-like 函数的构造可以促使在任何维度上生成 C∞ 紧凑支持的小支持小波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate compactly supported C∞ functions by subdivision

This paper discusses the generation of multivariate C functions with compact small supports by subdivision schemes. Following the construction of such a univariate function, called Up-function, by a non-stationary scheme based on masks of spline subdivision schemes of growing degrees, we term the multivariate functions we generate Up-like functions. We generate them by non-stationary schemes based on masks of three-directional box-splines of growing supports. To analyze the convergence and smoothness of these non-stationary schemes, we develop new tools which apply to a wider class of schemes than the class we study. With our method for achieving small compact supports, we obtain in the univariate case, Up-like functions with supports [0,1+ϵ] in comparison to the support [0,2] of the Up-function. Examples of univariate and bivariate Up-like functions are given. As in the univariate case, the construction of Up-like functions can motivate the generation of C compactly supported wavelets of small support in any dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信