Shengqi Liu, Zhenyan Guo, Ying Yang, Pei-dong Wu, Zhengyi Li, Keping Wang, Heng Zhang, Hu Li, Song Yang
{"title":"掺钴 CdS 量子点增强了 CO2 对甲酸的光电还原,具有高选择性","authors":"Shengqi Liu, Zhenyan Guo, Ying Yang, Pei-dong Wu, Zhengyi Li, Keping Wang, Heng Zhang, Hu Li, Song Yang","doi":"10.1007/s10311-023-01691-2","DOIUrl":null,"url":null,"abstract":"<div><p>Excessive carbon dioxide (CO<sub>2</sub>) emission has caused problems associated with environmental pollution and climate deterioration. As a consequence, the selective conversion of CO<sub>2</sub> into liquid fuels by artificial photosynthesis has gained increasing attention. However, the rational design of photocathode to achieve selective CO<sub>2</sub> photoelectroreduction is challenging. Here, we sensitized cuprous oxide (p-nCu<sub>2</sub>O) loaded on hydroxyl iron oxide (FeOOH) with cobalt-doped cadmium sulfide (Co:CdS) quantum dots to prepare a novel photocathode FeOOH/p-nCu<sub>2</sub>O/Co:CdS by sequential electrodeposition and chemical bath deposition. The composite photocathode exhibited a larger photovoltage, which is 1.9 times higher than the pristine counterpart, and was efficient for CO<sub>2</sub> reduction to produce formic acid with high selectivity of up to 82.9% (Faradaic efficiency). Theoretical calculations revealed that the photocathode out-layer Co:CdS quantum dots had increased binding energy toward the key intermediate *OOCH through additional hybridization orbitals to exclusively favor the formation of formic acid. An impurity energy level was revealed to form by doping Co to the CdS-containing composite, which could reduce the photocathode band gap with improved absorption toward visible light, thus remarkably increasing the photoelectrochemical properties. This is the first work undertaking the energy band structure optimization of the photocathode enabled by elemental doping to improve its photoelectrocatalytic performance.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 2","pages":"463 - 470"},"PeriodicalIF":15.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt-doped CdS quantum dots enhanced photoelectroreduction of CO2 to formic acid with high selectivity\",\"authors\":\"Shengqi Liu, Zhenyan Guo, Ying Yang, Pei-dong Wu, Zhengyi Li, Keping Wang, Heng Zhang, Hu Li, Song Yang\",\"doi\":\"10.1007/s10311-023-01691-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Excessive carbon dioxide (CO<sub>2</sub>) emission has caused problems associated with environmental pollution and climate deterioration. As a consequence, the selective conversion of CO<sub>2</sub> into liquid fuels by artificial photosynthesis has gained increasing attention. However, the rational design of photocathode to achieve selective CO<sub>2</sub> photoelectroreduction is challenging. Here, we sensitized cuprous oxide (p-nCu<sub>2</sub>O) loaded on hydroxyl iron oxide (FeOOH) with cobalt-doped cadmium sulfide (Co:CdS) quantum dots to prepare a novel photocathode FeOOH/p-nCu<sub>2</sub>O/Co:CdS by sequential electrodeposition and chemical bath deposition. The composite photocathode exhibited a larger photovoltage, which is 1.9 times higher than the pristine counterpart, and was efficient for CO<sub>2</sub> reduction to produce formic acid with high selectivity of up to 82.9% (Faradaic efficiency). Theoretical calculations revealed that the photocathode out-layer Co:CdS quantum dots had increased binding energy toward the key intermediate *OOCH through additional hybridization orbitals to exclusively favor the formation of formic acid. An impurity energy level was revealed to form by doping Co to the CdS-containing composite, which could reduce the photocathode band gap with improved absorption toward visible light, thus remarkably increasing the photoelectrochemical properties. This is the first work undertaking the energy band structure optimization of the photocathode enabled by elemental doping to improve its photoelectrocatalytic performance.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 2\",\"pages\":\"463 - 470\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-023-01691-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-023-01691-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cobalt-doped CdS quantum dots enhanced photoelectroreduction of CO2 to formic acid with high selectivity
Excessive carbon dioxide (CO2) emission has caused problems associated with environmental pollution and climate deterioration. As a consequence, the selective conversion of CO2 into liquid fuels by artificial photosynthesis has gained increasing attention. However, the rational design of photocathode to achieve selective CO2 photoelectroreduction is challenging. Here, we sensitized cuprous oxide (p-nCu2O) loaded on hydroxyl iron oxide (FeOOH) with cobalt-doped cadmium sulfide (Co:CdS) quantum dots to prepare a novel photocathode FeOOH/p-nCu2O/Co:CdS by sequential electrodeposition and chemical bath deposition. The composite photocathode exhibited a larger photovoltage, which is 1.9 times higher than the pristine counterpart, and was efficient for CO2 reduction to produce formic acid with high selectivity of up to 82.9% (Faradaic efficiency). Theoretical calculations revealed that the photocathode out-layer Co:CdS quantum dots had increased binding energy toward the key intermediate *OOCH through additional hybridization orbitals to exclusively favor the formation of formic acid. An impurity energy level was revealed to form by doping Co to the CdS-containing composite, which could reduce the photocathode band gap with improved absorption toward visible light, thus remarkably increasing the photoelectrochemical properties. This is the first work undertaking the energy band structure optimization of the photocathode enabled by elemental doping to improve its photoelectrocatalytic performance.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.