Araks Martirosyan, Rizwan Ansari, Francisco Pestana, Katja Hebestreit, Hayk Gasparyan, Razmik Aleksanyan, Silvia Hnatova, Suresh Poovathingal, Catherine Marneffe, Dietmar R. Thal, Andrew Kottick, Victor J. Hanson-Smith, Sebastian Guelfi, William Plumbly, T. Grant Belgard, Emmanouil Metzakopian, Matthew G. Holt
{"title":"以单细胞分辨率揭示帕金森病的细胞特异性反应","authors":"Araks Martirosyan, Rizwan Ansari, Francisco Pestana, Katja Hebestreit, Hayk Gasparyan, Razmik Aleksanyan, Silvia Hnatova, Suresh Poovathingal, Catherine Marneffe, Dietmar R. Thal, Andrew Kottick, Victor J. Hanson-Smith, Sebastian Guelfi, William Plumbly, T. Grant Belgard, Emmanouil Metzakopian, Matthew G. Holt","doi":"10.1186/s13024-023-00699-0","DOIUrl":null,"url":null,"abstract":"Parkinson’s Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson’s Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"128 1","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling cell type-specific responses to Parkinson’s Disease at single cell resolution\",\"authors\":\"Araks Martirosyan, Rizwan Ansari, Francisco Pestana, Katja Hebestreit, Hayk Gasparyan, Razmik Aleksanyan, Silvia Hnatova, Suresh Poovathingal, Catherine Marneffe, Dietmar R. Thal, Andrew Kottick, Victor J. Hanson-Smith, Sebastian Guelfi, William Plumbly, T. Grant Belgard, Emmanouil Metzakopian, Matthew G. Holt\",\"doi\":\"10.1186/s13024-023-00699-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson’s Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson’s Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.\",\"PeriodicalId\":18800,\"journal\":{\"name\":\"Molecular Neurodegeneration\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13024-023-00699-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-023-00699-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Unravelling cell type-specific responses to Parkinson’s Disease at single cell resolution
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson’s Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.
期刊介绍:
Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels.
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.