Haihua Hu , Bin Su , Xiaodong Liu , Hao-Cheng Thong , Yilin Jiang , Hezhang Li , Jing-Wei Li , Hua-Lu Zhuang , Zhanran Han , Jincheng Yu , B. Layla Mehdi , Jing-Feng Li
{"title":"化学键工程实现热电硒化铜的超高功率因数和使用稳定性","authors":"Haihua Hu , Bin Su , Xiaodong Liu , Hao-Cheng Thong , Yilin Jiang , Hezhang Li , Jing-Wei Li , Hua-Lu Zhuang , Zhanran Han , Jincheng Yu , B. Layla Mehdi , Jing-Feng Li","doi":"10.1016/j.joule.2023.12.019","DOIUrl":null,"url":null,"abstract":"<div><p><span>Porous structures can hinder phonon transport but inevitably deteriorate electrical and mechanical properties. In order to suppress the formation of pores, we propose a chemical bond engineering strategy to constrain the volatile Se in Cu</span><sub>2</sub><span>Se-based materials via applicable elemental substitution. Benefiting from the reduced porosity and successful dual doping<span>, Cu vacancies and carrier mobility are optimized for the Gd</span></span><sub>2</sub>S<sub>3</sub>-added Cu<sub>1.99</sub>Se samples, leading to an ultrahigh power factor of ∼17.4 μW cm<sup>−1</sup> K<sup>−2</sup> at 1,000 K and a high figure of merit of ∼2.5 at 1,050 K. The fabricated segmented single-leg device maintains a high conversion efficiency of ∼9.0% and a power density of ∼636.3 mW cm<sup>−2</sup> at Δ<em>T</em><span> = 516 K without obvious degradation over 110 cycles of stability tests. Our work demonstrates a paradigm to control the porosity caused by elemental volatilization, providing more opportunities to enhance both the thermoelectric performance and service stability.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 2","pages":"Pages 416-429"},"PeriodicalIF":35.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical bond engineering toward extraordinary power factor and service stability in thermoelectric copper selenide\",\"authors\":\"Haihua Hu , Bin Su , Xiaodong Liu , Hao-Cheng Thong , Yilin Jiang , Hezhang Li , Jing-Wei Li , Hua-Lu Zhuang , Zhanran Han , Jincheng Yu , B. Layla Mehdi , Jing-Feng Li\",\"doi\":\"10.1016/j.joule.2023.12.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Porous structures can hinder phonon transport but inevitably deteriorate electrical and mechanical properties. In order to suppress the formation of pores, we propose a chemical bond engineering strategy to constrain the volatile Se in Cu</span><sub>2</sub><span>Se-based materials via applicable elemental substitution. Benefiting from the reduced porosity and successful dual doping<span>, Cu vacancies and carrier mobility are optimized for the Gd</span></span><sub>2</sub>S<sub>3</sub>-added Cu<sub>1.99</sub>Se samples, leading to an ultrahigh power factor of ∼17.4 μW cm<sup>−1</sup> K<sup>−2</sup> at 1,000 K and a high figure of merit of ∼2.5 at 1,050 K. The fabricated segmented single-leg device maintains a high conversion efficiency of ∼9.0% and a power density of ∼636.3 mW cm<sup>−2</sup> at Δ<em>T</em><span> = 516 K without obvious degradation over 110 cycles of stability tests. Our work demonstrates a paradigm to control the porosity caused by elemental volatilization, providing more opportunities to enhance both the thermoelectric performance and service stability.</span></p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 2\",\"pages\":\"Pages 416-429\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435123005366\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123005366","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
多孔结构会阻碍声子传输,但不可避免地会降低电气和机械性能。为了抑制孔隙的形成,我们提出了一种化学键工程策略,通过适用的元素替代来限制 Cu2Se 基材料中 Se 的挥发。得益于孔隙率的降低和双掺杂的成功,添加了 Gd2S3 的 Cu1.99Se 样品的铜空位和载流子迁移率得到了优化,从而在 1,000 K 时获得了 ∼17.4 μW cm-1 K-2 的超高功率因数,在 1,050 K 时获得了 ∼2.5 的高优点系数。所制造的分段式单腿器件在 ΔT = 516 K 时保持了 ∼9.0% 的高转换效率和 ∼636.3 mW cm-2 的功率密度,在 110 个周期的稳定性测试中没有出现明显衰减。我们的工作展示了一种控制元素挥发造成的孔隙率的范例,为提高热电性能和服务稳定性提供了更多机会。
Chemical bond engineering toward extraordinary power factor and service stability in thermoelectric copper selenide
Porous structures can hinder phonon transport but inevitably deteriorate electrical and mechanical properties. In order to suppress the formation of pores, we propose a chemical bond engineering strategy to constrain the volatile Se in Cu2Se-based materials via applicable elemental substitution. Benefiting from the reduced porosity and successful dual doping, Cu vacancies and carrier mobility are optimized for the Gd2S3-added Cu1.99Se samples, leading to an ultrahigh power factor of ∼17.4 μW cm−1 K−2 at 1,000 K and a high figure of merit of ∼2.5 at 1,050 K. The fabricated segmented single-leg device maintains a high conversion efficiency of ∼9.0% and a power density of ∼636.3 mW cm−2 at ΔT = 516 K without obvious degradation over 110 cycles of stability tests. Our work demonstrates a paradigm to control the porosity caused by elemental volatilization, providing more opportunities to enhance both the thermoelectric performance and service stability.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.