液体和气体滑动流动的分子力学

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nicolas G. Hadjiconstantinou
{"title":"液体和气体滑动流动的分子力学","authors":"Nicolas G. Hadjiconstantinou","doi":"10.1146/annurev-fluid-121021-014808","DOIUrl":null,"url":null,"abstract":"By taking into account the inhomogeneity introduced by the presence of a solid boundary, slip-flow theory extends the range of applicability of the venerable Navier–Stokes description to smaller scales and into the regime where confinement starts to be important. Due to the inherently atomistic nature of solid–fluid interactions at their interface, slip flow can be described, at least in principle, predictively at this level. This review aims to summarize our current understanding of slip flow at the atomistic level in dilute gases and dense liquids. The discussion extends over the similarities and differences between slip in gases and liquids, characterization and measurement of slip by molecular simulation methods, models for predicting slip, and open questions requiring further investigation.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanics of Liquid and Gas Slip Flow\",\"authors\":\"Nicolas G. Hadjiconstantinou\",\"doi\":\"10.1146/annurev-fluid-121021-014808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By taking into account the inhomogeneity introduced by the presence of a solid boundary, slip-flow theory extends the range of applicability of the venerable Navier–Stokes description to smaller scales and into the regime where confinement starts to be important. Due to the inherently atomistic nature of solid–fluid interactions at their interface, slip flow can be described, at least in principle, predictively at this level. This review aims to summarize our current understanding of slip flow at the atomistic level in dilute gases and dense liquids. The discussion extends over the similarities and differences between slip in gases and liquids, characterization and measurement of slip by molecular simulation methods, models for predicting slip, and open questions requiring further investigation.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-121021-014808\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-121021-014808","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到固体边界的不均匀性,滑移流理论将古老的纳维-斯托克斯(Navier-Stokes)描述的适用范围扩展到了更小的尺度,并进入了约束开始变得重要的阶段。由于固体与流体在界面上的相互作用本身具有原子论性质,因此滑移流至少在原则上可以在这个层面上进行预测性描述。本综述旨在总结我们目前对稀释气体和稠密液体中原子层面滑移流动的理解。讨论范围包括气体和液体中滑移的异同、分子模拟方法对滑移的表征和测量、预测滑移的模型以及需要进一步研究的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Mechanics of Liquid and Gas Slip Flow
By taking into account the inhomogeneity introduced by the presence of a solid boundary, slip-flow theory extends the range of applicability of the venerable Navier–Stokes description to smaller scales and into the regime where confinement starts to be important. Due to the inherently atomistic nature of solid–fluid interactions at their interface, slip flow can be described, at least in principle, predictively at this level. This review aims to summarize our current understanding of slip flow at the atomistic level in dilute gases and dense liquids. The discussion extends over the similarities and differences between slip in gases and liquids, characterization and measurement of slip by molecular simulation methods, models for predicting slip, and open questions requiring further investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信