{"title":"二氢嘧啶酶相关蛋白 2 对大鼠记忆形成的影响及其在神经元背部重塑中可能发挥的作用","authors":"Arif A. Mekhtiev, Shamsiyya M. Asadova","doi":"10.1016/j.ibneur.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The article concerns the problem of molecular mechanisms of memory formation. In this study the effects of polyclonal antibodies to serotonin-modulating anticonsolidation protein (SMAP) complex and its component dihydropyrimidinase-related protein 2 (DRP2) have been analyzed. Intra-cerebral administration of polyclonal anti-SMAP antibody significantly enhanced elaboration and strengthened memory formation in two complex behavioral conditioned models. At the same time, intra-cerebral administration of anti-SMAP antibody resulted in an increase of the content of nerve growth factor (NGF) in the water-soluble fraction of the hippocampus while intra-cerebral administration of anti-DRP2 antibody caused a decrease in the content of β-III tubulin (a marker of differentiated neurons) in the hippocampus and in the left parietal cortex of untrained rats. The obtained results indicate that DRP2 might participate in regulation of the processes of back remodeling of mature nerve cells of adult organisms, occurring during training of rats in the behavioral paradigm used in this study under the effects of anti-SMAP and anti-DRP2 antibodies. Conclusion is made that back remodeling (dedifferentiation) of mature nerve cells, apparently, is engaged in memory formation.</p></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":"16 ","pages":"Pages 155-161"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667242124000010/pdfft?md5=63251340f7f50ed9a10fb8eba3c48660&pid=1-s2.0-S2667242124000010-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of dihydropyrimidinase-related protein 2 in memory formation on rats and its possible role in neuronal back remodeling\",\"authors\":\"Arif A. Mekhtiev, Shamsiyya M. Asadova\",\"doi\":\"10.1016/j.ibneur.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article concerns the problem of molecular mechanisms of memory formation. In this study the effects of polyclonal antibodies to serotonin-modulating anticonsolidation protein (SMAP) complex and its component dihydropyrimidinase-related protein 2 (DRP2) have been analyzed. Intra-cerebral administration of polyclonal anti-SMAP antibody significantly enhanced elaboration and strengthened memory formation in two complex behavioral conditioned models. At the same time, intra-cerebral administration of anti-SMAP antibody resulted in an increase of the content of nerve growth factor (NGF) in the water-soluble fraction of the hippocampus while intra-cerebral administration of anti-DRP2 antibody caused a decrease in the content of β-III tubulin (a marker of differentiated neurons) in the hippocampus and in the left parietal cortex of untrained rats. The obtained results indicate that DRP2 might participate in regulation of the processes of back remodeling of mature nerve cells of adult organisms, occurring during training of rats in the behavioral paradigm used in this study under the effects of anti-SMAP and anti-DRP2 antibodies. Conclusion is made that back remodeling (dedifferentiation) of mature nerve cells, apparently, is engaged in memory formation.</p></div>\",\"PeriodicalId\":13195,\"journal\":{\"name\":\"IBRO Neuroscience Reports\",\"volume\":\"16 \",\"pages\":\"Pages 155-161\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667242124000010/pdfft?md5=63251340f7f50ed9a10fb8eba3c48660&pid=1-s2.0-S2667242124000010-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBRO Neuroscience Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667242124000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242124000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Impact of dihydropyrimidinase-related protein 2 in memory formation on rats and its possible role in neuronal back remodeling
The article concerns the problem of molecular mechanisms of memory formation. In this study the effects of polyclonal antibodies to serotonin-modulating anticonsolidation protein (SMAP) complex and its component dihydropyrimidinase-related protein 2 (DRP2) have been analyzed. Intra-cerebral administration of polyclonal anti-SMAP antibody significantly enhanced elaboration and strengthened memory formation in two complex behavioral conditioned models. At the same time, intra-cerebral administration of anti-SMAP antibody resulted in an increase of the content of nerve growth factor (NGF) in the water-soluble fraction of the hippocampus while intra-cerebral administration of anti-DRP2 antibody caused a decrease in the content of β-III tubulin (a marker of differentiated neurons) in the hippocampus and in the left parietal cortex of untrained rats. The obtained results indicate that DRP2 might participate in regulation of the processes of back remodeling of mature nerve cells of adult organisms, occurring during training of rats in the behavioral paradigm used in this study under the effects of anti-SMAP and anti-DRP2 antibodies. Conclusion is made that back remodeling (dedifferentiation) of mature nerve cells, apparently, is engaged in memory formation.